Distributed Synchronization

«A man with one clock knows what time it is – a man with two is never sure.»
Synchronous vs Asynchronous

Synchronous algorithms simple to design and reason about:

Send...

... receive...

... compute.
Synchronous vs Asynchronous

Asynchronous systems hard:
- Asynchronous = message takes arbitrarily long (but no losses)
- Remember BFS? Agree when next phase, counters, …

Idea: How to emulate synchronous in asynchronous?
Simple Idea

Simple idea: add round info to packets!

Local Synchronization

In round i:
- send message to all neighbors including usual packets of round i (of sync. algo, if any) plus also include round information
- go to next round when all neighbors have sent round i infos too
Simple Idea

Simple idea: add round info to packets!

Local Synchronization

In round i:
- send message to all neighbors including usual packets of round i (of sync. algo, if any) plus also include round information
- go to next round when all neighbors have sent round i infos too

Can we do without round info in packets? Yes: α-synchronizer works with clock pulses indicating start of next round!
Synchronizer

A (distributed) synchronizer generates clock pulses (PULSE) at each node of the network.

Valid Clock Pulse

A pulse generated at some node v is valid, iff it is generated after v received all the messages of the synchronous algorithm sent to v by its neighbors in the previous pulses.
Definitions

Synchronizer

A (distributed) synchronizer generates clock pulses at each node of the network.

What is overhead? When to generate valid pulses?

synchronous algorithm sent to v by its neighbors in the previous pulses.
Overhead of Using Synchronizers

Overhead: Message needed for each pulse, independent of protocol data!

Overhead

Say $T(A)$ and $M(A)$ are time and message complexity of synchronous algorithm A, and $T(S)$ and $M(S)$ are complexities of a synchronizer for each pulse. Moreover, $T_{\text{init}}(S)$ and $M_{\text{init}}(S)$ to set up synchronizer. Then:

$$T = T_{\text{init}}(S) + T(A) \cdot (1 + T(S)), \quad M = M_{\text{init}}(S) + M(A) + T(A) \cdot M(S)$$

Proof.

- Setup synchronizer clear: one time cost
- Each round additionally costs time $T(S)$ and messages $M(S)$

In the following, we will ignore initialization costs.
Definitions

Safe Node

A node v is **safe** wrt certain clock pulse if all messages of the synchronous algorithm sent by v in that pulse have already arrived **at their destination**.

v not safe wrt 10

v safe wrt 10
Synchronizer

Next Pulse

If all neighbors of a node v are safe wrt the current clock pulse of v, the next pulse can be generated for v (**valid**).

Proof.

If all neighbors of v are safe wrt that pulse, v has received all messages of the given pulse! So if v generates a new pulse now, it must be valid!

How to detect?

ACKs (reached dest!), at most factor 2 more messages.
The Local Synchronizer α

Synchronizer α

At node v:
- wait until v is safe (learn via ACKs)
- send SAFE to all neighbors
- wait until v receives SAFE messages from all neighbors
- start new PULSE

Via ACKs, node detects when it is safe (= all its messages arrived at destination), the reports it to neighbors. When all neighbors are safe (= all their neighbors including v got their messages), it continues.

No initialization needed! Pulse can not bypass an old packet!

Overhead?
Analysis of Local Synchronizer α

Synchronizer α

Overhead per synchronous round:

- $T(\alpha) = O(1)$
- $M(\alpha) = O(m)$

Why?

- Communication only between neighbors
- As soon as all neighbors of a node v become safe, v will know after one additional round
- Every edge sees at most 6 messages (PULSE, SAFE, ACK) (but unfortunately, maybe in reality no message would have been sent in sync algo)

Happy?
Analysis of Local Synchronizer α

Synchronizer α

Overhead per synchronous round:

$T(\alpha) = O(1)$

$M(\alpha) = O(m)$

Time complexity good, but too much communication!

Ideas? Recall «Flooding»...
The Global Synchronizer β

Idea: make global synchronization:
Pre-compute a **leader** and a **spanning tree**: convergecast to next phase!

SAFE: round x done!
The Global Synchronizer β

Idea: make global synchronization:
Pre-compute a leader and a spanning tree: convergecast to next phase!

root ℓ

PULSE: Go to next round $x+1$

tree T
The Global Synchronizer β

Idea: make global synchronization:
Pre-compute a **leader** and a **spanning tree**: convergecast to next phase!

Synchronizer β

At node v:
- wait until v is safe
- wait until v receives SAFE message **from all its children** in tree
- send SAFE message to parent in T
- wait until PULSE received from parent
- send PULSE to children
- start PULSE

Complexity?
The Global Synchronizer β

Synchronizer β

Complexities per synchronous round:

- $T(\beta) = O(\text{diam } T) = O(n)$
- $M(\beta) = O(n)$

Why?
- $T(\beta)$ and $M(\beta)$: follow from convergecast
- Initialization: improved GHS gives $T_{\text{init}}(\beta) = O(n)$, $M_{\text{init}}(\beta) = O(m + n \log n)$

Local synchronizer faster, global synchronizer less messages!
How to combine?
The Hybrid Synchronizer γ

Idea: Make β in dense areas and α in sparse areas
The Hybrid Synchronizer γ

Idea:

Partition network into small-diameter clusters.
Idea:

Partition network into small-diameter clusters.

Dense but small diameter, so do synchronizer β!
The Hybrid Synchronizer γ

Idea:

Between clusters, do synchronizer α!
(See it as graph where clusters collapsed.)

Partition network into small-diameter clusters.
The Hybrid Synchronizer γ

Idea:

Each cluster has leader and BFS spanning tree!

Cluster leaders
The Hybrid Synchronizer γ

Idea:

- intra-cluster tree edge
- intra-cluster edge (not tree)
- inter-cluster edge
- edge between clusters
The Hybrid Synchronizer γ

Idea:

Partition network into small-diameter clusters.

Cluster safe if all its nodes safe.
The Hybrid Synchronizer γ

Idea:
1. Phase 1: Apply Synchronizer β in each cluster; when done inform leaders in neighbor clusters
2. Phase 2: Generate next pulse when neighbor clusters are safe (Synchronizer α)

Synchronizer γ

For node v:
wait until v is safe
wait until v receives SAFE from all children in intra-cluster tree
send SAFE to parent in tree
wait for CLUSTERSAFE message from parent
send CLUSTERSAFE to children
wait until NEIGHBORSAFE received from all incident inter-cluster edges and children in intra-cluster
send NEIGHBORSAFE to parent
wait for PULSE and forward
The Hybrid Synchronizer γ

Idea:
1. Phase 1: Apply Synchronizer β in each cluster; when done inform leaders in neighbor clusters
2. Phase 2: Generate next pulse when neighbor clusters are safe (Synchronizer α)

Synchronizer γ

For node v:
- wait until v is safe
- wait until v receives SAFE from all children in intra-cluster tree
- send SAFE to parent in tree
- wait for CLUSTERSAFE message from parent
- send CLUSTERSAFE to children
- wait until NEIGHBORSAFE received from all incident inter-cluster edges and children in intra-cluster
- send NEIGHBORSAFE to parent
- wait for PULSE and forward

Complexity?
Synchronizer γ

Let m_c be number of inter-cluster edges and let k be the maximum cluster radius (max dist leaf to leader).
Then:

- $T(γ) = O(k)$
- $M(γ) = O(n+m_c)$

Why?
Synchronizer γ

Let m_c be number of inter-cluster edges and let k be the maximum cluster radius (max dist leaf to leader).

Then:

$$T(\gamma) = O(k)$$
$$M(\gamma) = O(n+m_c)$$

Why?

- **Time:**
 - Depth of tree enough (among all neighbor clusters).

- **Messages:**
 - intra-cluster tree edges see SAFE, CLUSTERSAFE, NEIGHBORSAFE, PLUSE, plus ACKs. It's trees, so $O(n)$.
 - one NEIGHBORSAFE for each inter-cluster edge
Synchronizer γ

Let m_c be the number of inter-cluster edges and let k be the maximum cluster radius (max dist leaf to leader). Then:

\[
T(\gamma) = O(k) \\
M(\gamma) = O(n + m_c)
\]

Why?
- **Time:**
 - Depth of tree enough (among all neighbor clusters).
- **Messages:**
 - intra-cluster tree edges see SAFE, CLUSTERSAFE, NEIGHBORSAFE, PLUSE, plus ACKs. It’s trees, so $O(n)$.
 - one NEIGHBORSAFE for each inter-cluster edge

Want to minimize k and m_c: How to partition?

Stefan Schmid @ T-Labs Berlin, 2013/4
Possible Partitions

- What happens if each single node is its own partition?
- What if everything is one big cluster?
Possible Partitions

- What happens if each single node is its own partition?
- What if everything is one big cluster?

What’s our synchronizers!
Network Partition

Idea:
1. Construct one cluster after another; start cluster at random non-covered node
2. Grow as long as “growth significant” (factor ρ)

Define: $B(v,r) = \text{Ball of radius } r \text{ around } v$

Cluster Construction

while unprocessed nodes:
 select arbitrary unprocessed node v
 $r:=0$
 while $|B(v,r+1)| > \rho \times |B(v,r)|$ do
 $r := r+1$
 end while
 makeCluster($B(v,r)$)
end while
Partition Properties

The resulting network partition:
(1) consists of clusters of radius at most $\log_\rho n$
(2) at most $(\rho - 1)*n$ inter-cluster edges
Quality of Partition

Partition Properties

The resulting network partition:

1. consists of clusters of radius at most $\log_\rho n$
2. at most $(\rho - 1)*n$ intercluster edges

Why?

- Cluster radius:
 - Radius grows only if cluster size increases by factor ρ
 - As there are at most n nodes, this can happen at most $\log_\rho n$ times

- Inter-cluster edges:
 - Inter-cluster edge connects node at border of cluster with node outside cluster
 - Consider cluster $C=B(v,r)$: we know $|B(v,r+1)| \leq \rho * |B(v,r)|$
 - So the size of the “border of the cluster” is at most
 $$|B(v,r+1) \setminus B(v,r)| \leq \rho * |C| - |C|$$
 - In worst case, each border node is own cluster, so at most $\rho * |C| - |C|$ per cluster
 - Summing over all cluster (n nodes in total): $\sum (\rho - 1)* |C| = (\rho - 1)* \sum |C| = (\rho - 1)* n$
Partition Properties

The resulting network partition:

1. consists of clusters of radius at most $\log_\rho n$
2. at most $(\rho - 1)n$ intercluster edges

Asymptotically optimal tradeoff!
Partition Properties

The resulting network partition:
(1) consists of clusters of radius at most $\log_\rho n$
(2) at most $(\rho - 1)n$ intercluster edges

Example: $\rho = 2$
Logarithmic time, linear number of inter-cluster edges

Example: $\rho = n^{1/k}$
k time, $O(n^{1+1/k})$ inter-cluster edges
- Try to make synchronous BFS algorithm asynchronous with γ synchronizer

- Bad about our solution: all nodes need to participate in synchronization even if they are “active” only during small algorithm period
End of Lecture