Socket Intents: Leveraging Application Awareness
for Multi-Access Connectivity

Philipp S. Schmidt!, Theresa Enghardt!, Ramin Khalili'-2, Anja Feldmann!
{philipp, theresa, ramin, anja} @inet.tu-berlin.de
TU Berlin! / Telekom Innovation Laboratories?

ABSTRACT

In today’s Internet, almost all end devices have multiple interfaces
built in. This enables users to seamlessly switch between different
access networks or even use them simultaneously; to better use the
resources available to them and to better satisfy their needs. This is
referred to as mobile data offloading and has received lots of atten-
tion recently in both the research community and in the industry.
However, all the proposed data solutions either rely on static con-
figuration policies or are reactive rather than proactive with regards
to the application needs.

In this paper, we propose a proactive, application informed ap-
proach, Socket Intents. Socket Intents augment the socket interface
to enable the application to express what it knows about its com-
munication patterns and preferences. This information can then be
used by our proactive policies to choose the appropriate interface,
tune the network parameters, or even combine multiple interfaces.
We provide a prototype implementation of our Socket Intents and
present a first evaluation of the Intents and its benefits.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design; D.4.4 [Operating Systems]: Communications
Management—~Network communication

Keywords

Socket Intents; Socket API; Network Programming Interfaces; Ap-
plication Awareness; Multi-Access Connectivity; Network Proper-
ties

1. INTRODUCTION

Ten years ago, most clients had just a single way to connect to
the Internet (typically WiFi for laptops, GPRS for smartphones,
Ethernet for workstations). Today, almost all devices have multi-
ple interfaces built in. For example, almost all smartphones have
built-in 3G/4G as well as WiFi interfaces, see Figure 1, while most
laptops have Ethernet interfaces in addition. Moreover, they can
seamlessly switch between using one or the other interface or even
use multiple of them at the same time. This is often referred to as
Multiple Access Connectivity.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CoNEXT’13, December 9—-12, 2013, Santa Barbara, California, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2101-3/13/12 ...$15.00.
http://dx.doi.org/10.1145/2535372.2535405.

295

Figure 1: Multi-Access Host with built-in 3G/4G/WiFi.

Multiple access connectivity enables us to ask the question of
mobile data offloading which has gotten a lot of attention recently
in the research community, e.g., [8, 2], as well as in the industry,
e.g. [4]. The motivation is that the performance that each individual
network technology provides differs, e.g., in terms of bandwidth,
delay, availability, congestion, cost per byte, and energy cost. For
example, while WiFi if uncongested provides higher bandwidth
than 3G and therefore may be preferable, the 3G network may be
preferable if the WiFi network is congested. Moreover, 3G and
4G work even if the user is no longer in reach of her WiFi access
points. Of course 4G currently offers higher peak bandwidth than
even most DSL lines but it is a shared medium and thus suscepti-
ble to congestion. Thus, there is a lot of optimization potential on
the devices with respect to choosing or combining the appropriate
interfaces.

Earlier work in this area focused on either the offloading case,
choosing an appropriate interface, or using multiple interfaces in
parallel. For example for the offloading case we refer, e.g., to Lee
et al. [8] who demonstrate via a quantitative study the performance
benefit of offloading 3G mobile data to WiFi networks, and Bal-
asubramanian et al. [2] who propose Wiffler to augment mobile
3G capacity with WiFi. For choosing an interface we, e.g., point
to the work in the IPv6 multihoming context [9, 14], DNS related
approaches, e.g., RFC6419 [15], or locator/identifier approaches,
e.g., [10]. The most recent work for using multiple interfaces in
parallel is Multipath TCP [5, 11].

However, all of the above solutions either rely on static config-
uration policies or are reactive rather than proactive with regards
to the application needs. While reactive solutions like Multipath
TCP can efficiently distribute traffic over multiple links, they can
only react to effects like congestion, RTT and others observed over
time throughout the transfer and therefore only long living flows
can benefit from them.



In this paper, we propose a proactive, application informed ap-
proach: Socket Intents. For example, if the user of the smart phone
of Figure 1 wants to download the newest football scores or stock
market quotes, most objects will be small and delay is critical.
However, if she accesses the newest e-book, bandwidth is more
critical. One of the key problems though is that the transport and
network layer typically have no idea of the size of the downloaded
data nor the relevance to the user. However, this information is of-
ten available to the application. Therefore, Socket Intents augment
the socket interface to enable the application to express its com-
munication preferences. Here, preferences can refer to high band-
width, low delay, connection resilience, etc. This information can
then be used by our dynamic proactive policies to choose the ap-
propriate interface, tune the network parameters, or even combine
multiple interfaces.

The principle observation that the application has critical infor-
mation is not novel, but has been made before in the context of
Quality of Service. The main difference between QoS and our
Socket Intents approach is, as smartly summarized by the CONEXT
TPC, that with the Socket Intents approach, "(...) the application
tells what it knows as opposed to what it wants, as in prior work on
QoS". Therefore, the application expresses what it knows about the
communication, what the traffic might look like and what the appli-
cation can tolerate. Based on that knowledge, our policies can take
advantage of interface QoS, if it is available, but does not rely on
it as the different interface technologies by default offer different
QoS characteristics.

While Socket Intents are inspired by Intentional Networking [6],
our system focuses on enabling elaborate policies instead of having
a fixed one. We extend the Socket API to the Internet protocol suite
instead of building an overlay layer on multiple protocol suites.
Thus, the use of our system only requires minimal changes to the
socket interface as well as to the applications and is incrementally
deployable.

In summary, our system consist of (i) an augmented socket li-
brary to communicate the needs of the application, (ii) a set of
policies to select or combine appropriate network interfaces, and
(iii) mechanisms to combine or select interfaces.

Our key contribution is the introduction of the concept of Socket
Intents together with a prototype implementation and a first evalu-
ation. Socket Intents provide:

e A generic scheme which enables applications to express their
knowledge and needs for its communication on a per-connection
basis.

e An interface for fulfilling applications’ needs on a best-effort
basis without requiring QoS.

The remainder of this paper is structured as follows: First we
provide an overview over Socket Intents from a system point of
view and present a set of Socket Intents for applications to express
their needs. Then we describe our prototype implementation in
more detail and present a first evaluation that illustrates a possible
use of the Intents and its benefits. Finally, we conclude our paper
with an outlook and possible next steps.

2. SOCKET INTENTS

The goal of Socket Intents is to enable the applications to express
their communication preferences in order to take advantage of the
various network interfaces. We assume that applications specify
their preferences in a selfish, but not malicious way and that it is up
to the policy to find a compromise between demands. Therefore,
selfish behavior does not hurt other applications as it would with

296

&>

(a) Traditional. (b) With Socket Intents.

Figure 2: Within host: Applications/network interfaces.

prioritization. In the following we discuss where the interface to
specify intents should be placed and what the challenges are.

2.1 Concept

Let’s review how communication works within today’s OSes, see
Figure 2(a). To start, the application request a socket, either TCP or
UDP, via the Socket API, today’s almost universal interface. The
OS then maps the socket to a specific network interface using a
fixed internal policy and then uses it for the communication. The
fixed internal policy currently gets minimal information from the
application.

To benefit from the application’s knowledge about the upcom-
ing communication, the programmer has to pass the information
available within the application along with the request for commu-
nication. If no information is provided, the OS can only rely and
react on information it can gather from the communication itself.

There are two principle options to add more information: either
modify the kernel or extend the Socket API. We choose the latter
as it is simpler and easier to port. More specifically, we decided
to stick to user-space modification. Accordingly, we augment the
Socket library of the Socket API with additional socket options and
add an explicit user space policy manager, Figure 2(b). Upon (1)
recognizing a Socket Intent option, the Socket library (2) calls the
user space policy manager which can then (3) choose either a single
interface or multiple interfaces. This is then used to (4) override the
kernel interface policy.

Having stated this system architecture, the key design questions
are:

e Which Intents?
e What policy?
e Do the policies need additional information?

With regards to realizing Socket Intents the system questions are:

e How to add Socket Intents to the Socket library?

e How to enable the interactions with the policy?

e How to bias the interface selection, e.g., by choosing source and
destination IP addresses?

2.2 Applications Intents

As mentioned before, the goal of Socket Intents is to enable
the applications to express their communication preferences. Here
communication preference refers to desired characteristics, e.g.,
low delay or high throughput and is optional information. Socket
Intents are purely advisory. They are not meant to specify hard re-
quirements or imply QoS guarantees. Rather they are accounted for
on a best-effort basis. Still, Socket Intents are inspired by DiffServ
as well as IntServ in the sense that they specify traffic classes on a
per connection basis.



Intent Type  Value
Category Enum  Query, bulk transfer, control traffic, stream
File size Int Number of bytes transferred by the application
Duration Int Time between first and last packet in seconds
Bitrate Int Size divided by duration in bytes per second
Burstiness  Enum  Random bursts, regular bursts, no bursts or bulk
(congestion window limited)
Timeliness Enum  Stream (low delay, low jitter),
interactive (low delay),
transfer (completes eventually)
or background traffic (only loose time constraint)
Resilience  Enum  Sensitive to connection loss,

undesirable (loss can be handled)
or resilient (loss is tolerable)

Table 1: List of proposed Socket Intents.

Let’s start with some examples: (i) If the antivirus software needs
an update this usually implies downloading a large file. This is a
bulk transfer for which the application may already know the file
size. Timing is typically noncritical and the data can be down-
loaded as background traffic. It would not hurt if the TCP connec-
tion was closed during the transfer as the download can be contin-
ued. For this connection the application can set the general cat-
egory bulk transfer. Additional information provided can be file
size, timeliness, and resilience. (ii) If you want to watch a video it
usually means using a streaming application. This is a stream trans-
fer for which the application may know the bitrate and the duration.
It does rather not want the TCP connection to be disconnected be-
cause that might have an effect that is visible to the user. It can
put this connection into the general category stream transfer with
additional information about duration, bitrate and resilience.

Based on this philosophy, we propose a set of Socket Intent op-
tions, see Table 1. Socket Intents are optional in the sense that they
are not required but any number of them can be specified. They are
structured hierarchically, starting with the “category” option with
possible values of query, bulk transfer, control traffic, stream which
are realized as enum. Then we have more specific options which
include file size, duration of the flow, expected bitrate, whether the
traffic is bursty, whether the timeliness of the flow completion mat-
ters and how resilient the application is against connection loss.
Each of these can either be enums or integers. Note that these are
extensible and Table 1 is only a first proposal.

2.3 Policies

Our system design places the hardest problem, the actual deci-
sion which interface(s) to use for which communication, into the
policy component. It is important to note that the specific policy
that is most beneficial will likely depend on the configuration of
the host, the current location, the current network availability, etc.
Because this is a very hard problem, we decided to not focus on
a specific policy but rather provide a generic framework in which
one can use and evaluate different policies. Accordingly, the sys-
tem components of our design are summarized in Figure 3.

We do not address the problem of how to find a reasonably good
policy within this paper, however for our prototype implementa-
tion we need some policies to start with. Among the most obvi-
ous policy is the following one: use high bandwidth interfaces for
application requests of the category bulk transfer and low latency
interfaces for application requests of the category query. With our
Socket Intents, we enable the policy to decide what to optimize
for, which would be undecidable otherwise. Yet, even this simple
policy points out certain limits to realizing policies without addi-

297

Multi Access
1 Manager

Figure 3: Components of the framework.

Application |

Socket Intent Library
Original Socket Library

tional information. How can the policy infer that an interface is
high bandwidth or low delay? This is information that can only be
derived via configuration or measurements. Accordingly, we de-
cided to add both a configuration interface as well as a statistics
interface to our prototype.

Finally, policies are not limited to the use of a single interface if
the transport protocol supports the simultaneous use of multiple in-
terfaces. The polices in our current prototype use socket options to
control use of MPTCP [11] or multiple paths in SCTP [13]. Future
versions will incorporate interactions between our policies and the
path selection of MPTCP and SCTP.

3. IMPLEMENTATION

Our Socket Intents implementation consists of three components:
the Multi Access Manager (MAM), the policies, and the Socket In-
tent library, see Figure 3, each implemented in C and compatible
with Linux as well as MacOS.

We realize the selection of the network interface by choosing the
source address of the new connection. While this approach seems
to be a hack in the first place, it just overrides a decision which is
usually made by the kernel based on a very simple policy and the
routing table with a more informed decision.

Furthermore we can optimize by choosing among the possible
alternatives for the destination address. This is possible because
a large fraction of the content, especially almost all content deliv-
ered through Content Distribution Networks (CDNs), is served by
multiple servers that can be resolved from a single host name. In
addition, for a single host name, there can be different translations
if requested over different interfaces or from different name servers
as a result of optimizations by a CDN.

The functions as well as the control transfers realizing the mech-
anisms mentioned above are shown in Figure 4. The latter figure
highlights that it is not sufficient to just modify the socket and the
connect calls. Rather we also needed to modify the interface to the
resolver which handles the host name to IP address translation.

3.1 Multiple Access Manager

The Multi Access Manager (MAM) is a daemon for hosting the
policy modules which can be exchanged. As such it provides the
policy framework with initialization and request processing.

Upon startup, the MAM scans for available network interfaces.
Then, it reads the configuration file which includes the list of in-
terfaces to include/exclude for source or destination address selec-
tion. Moreover, it is possible to specify interface and policy specific
information via key/value pairs there. This information is stored
within the MAM and later made available to the policy. Then it
instantiates the policy from a dynamically loaded library and ini-
tializes it. This finishes the initialization phase of the MAM and
it then moves into operation. This means that the MAM can now
process requests by the application via the Socket Intent API. These
requests are communicated via Unix domain sockets and realized
asynchronously using libevent.



Socket Intent Library | Multi Access Manager | Policy

startup ——— »rinit()

startup

setsockopt(soL_iNTenTs, ...)
getaddrinfo () ———»r process_mam_req() —»+on_resolve_req()

mam_async_resolve() —» on_resolve_res()
1

\

socket ()

connect () ————®rprocess_mam_req() —»-0n_connect_req()

\

read/write/...()

Figure 4: Interactions of the Socket Intent components.

3.2 Policy

The policy module is invoked by the MAM for each getaddr—
info or connect call of the Socket Intent API, see Figure 4.
The MAM also provides the request context which includes the
socket options including the Socket Intents as well as the state of
the connection. The latter includes information about the network
interfaces as well as if the application already executed a “bind”
call. This is necessary as layering within TCP/IP is not strict and
thus the application may be involved in address resolution and se-
lection.

Within the getaddrinfo call the policy typically uses the
name resolution framework provided by the MAM and discussed
later, to compile an ordered list of possible destination addresses
which is then returned to via the MAM to the application. For the
connect call the policy selects the desired source and destination
addresses from the request context information provided by MAM.
Typically though the destination IP address is a parameter for the
connect call and picked by the application based on the results of
the getaddrinfo call. Moreover, the policy suggests the appro-
priate socket options to be set by the Socket API.

3.3 Augmented Socket Library

The modifications to the Socket API are threefold: we introduce
the Socket Intent options, we enable the MAM to select the source
IP and the destination IP address.

Socket Intent Options:

‘We decided to use socket options for similar reasons as in RFC5014 [9]

or RFC6724 [14]. For this we introduce a new socket option level,
called SOL_INTENTS, and within that we use names similar to
those of Table 1. This involves fewer changes to the Socket API
than needed in alternative approaches like [12, 1, 16] or passing la-
bels with each message as proposed by Intentional Networking [6].
The intents are stored in a per-socket context and passed to the
MAM.

Source Address Selection:

A policy selects a network interface by choosing the source address.
Here we need to consider two cases: either the application calls
bind itself or it does not. In the first case the application picks
the source IP and includes it in the bind call. In this case the policy
has the option of overwriting the source IP but typically should not.
If the application does not call bind then the policy chooses the
source IP address and our modified connect binds the socket to
the selected source IP address.

298

Destination Address Selection:
For the policy to select the destination address, it is not sufficient
to just modify the socket library calls as it involves name resolu-
tion. Therefore, we include a resolver library based on libevent with
MAM. The resolver performs name resolution asynchronously from
within the policy over all network interfaces specified in the MAM
configuration file. Among the per interface parameters are which
DNS servers to use with which parameters. Once the policy deems
that it has sufficient information the resolving step can be aborted.
Realizing the address selection highlights another OS limitation.
Typically sockets and resolver calls are not directly associated with
each other. But this association is necessary for destination ad-
dress selection within Socket Intents. We realize this by adding the
socket context as an additional parameter to all socket and resolver
calls.

4. EVALUATION

To understand which benefits Socket Intents provide to the end-
user we, in this section, use illustrative examples to highlight the
potential of even very simplistic policies.

Client Setup:

For this purpose we modified one of the “simplest” HTTP client,
namely wget, to enable it to set Socket Intents. More specifically,
we added support for two different Socket Intents: “category” and
“filesize”.

The goal of the “category” intent is to broadly classify upcoming
transfers. It can be explicitly set by an end-user as command line
parameter given to wget. We use it in Scenario 1 by setting it to
be either “bulk” or “query” based on prior knowledge about the
evaluation setup.

The goal of the intent “filesize” is to enable the Socket Intent
API to distinguish between large and small downloads automati-
cally. The latter are more sensitive to delay while the former are
more sensitive to bandwidth availability. However, for Web we do
not necessarily know the object size up front. To determine the
value of the “filesize” intent, we further modified wget to perform
its downloads in two phases taking advantage of the HTTP range
query capabilities. More specifically, our modified wget first issues
a range request for the first m bytes of each object! in order to ac-
quire the size of the object from the HTTP header. It then opens a
new connection for which it specifies the “filesize” n to download
the remaining n — m Bytes. We use the two-phase download to
determine the “filesize” intent in Scenario 2.

One unfortunate limitation of wger is that it neither supports
HTTP pipelining nor multiple TCP connections. Thus, in order
to take advantage of two independent network interfaces one may
have to run multiple wget instances.

Evaluation Setup:

‘We opt for clients with two network interfaces of opposite proper-
ties: one with relatively low delay but also only limited bandwidth
and one with relatively large delay but higher bandwidth. More
specifically: 11 resembles a relatively low bandwidth DSL line
with fast-path, i.e., 10ms RTT, 6Mbits downstream bandwidth and
768Kbits upstream bandwidth, as this is the type of DSL line in
most parts of Germany [3]; 12 resembles a reasonable LTE net-
work access, i.e., 70ms RTT, 12Mbits downstream and 6Mbits up-
stream [7]. In all scenarios, we assume that these characteristics
remain stable and are known to the policy.

! for the initial request should be chosen in order to address the
trade-off when a TCP download is dominated by the round trip time
and when it is dominated by the network bandwidth. We suggest to
use values for m that fit within the initial TCP congestion window.



40

30

20 +

Completion time [s]

—_—

T

i i2 i1 and i2 i1 i2
. with Intents X
New York Times Flickr

i1 andi2
with Intents

Figure 5: Scenario 1 — Boxplot of website loading times.

We realize this scenario in an emulated environment where we
have explicit control over all components. As server and client
we use two Linux machines (Intel Xeon 1L.5420, 2x4 Cores, 16GB
RAM) interconnected via a 1Gbit/s Ethernet and routed via a ma-
chine of the same type on which we run a traffic shaper. More
specifically, for shaping we use the TC hierarchical token bucket
(HTB) scheduler and for delay the TC Network emulator scheduler.
The client is equipped with two independent Ethernet interfaces
which are configured as 11 and i2.

With regards to the workload for both scenarios, we use snap-
shots of Web pages: more specifically the landing page of a popular
newspaper, New York Times (www.newyorktimes.com), and
a sub-page of a popular photo sharing site, Flickr (www.flickr.
com/explore) from Jun 10th 2013. Both pages have a size of
2.8 MBytes. The first one has roughly 130 embedded objects which
are relatively small with a range from 48 bytes to 263 KBytes with
a median of 6 KBytes and a mean of 21 KBytes. The second one
consist of only 30 embedded objects with size between 43 bytes
to 572 KBytes a median of 65 KBytes and a mean of 94 KBytes.
The Web pages were retrieved using Google Chrome’s save whole
webpage function and copied to the server. In addition, in Scenario
1 we use a bulk transfer as background traffic, realized by down-
loading files of size greater than 48 MBytes.

Scenario 1: Bulk Transfer vs. Query

In our first scenario we revisit a performance problem often en-
countered at home: browsing a Web site while downloading a large
file. The first one is response time critical while the latter is hawk-
ing the bandwidth. We simulate this scenario by two parallel wget
instances: While instance (i) with intent “bulk transfer” fills the
link by downloading a large file, instance (ii) with intent “query”
tries to fetch one of our two websites.

The policy that we use here is that “bulk transfers” are sent over
the higher bandwidth interface 12 and “queries” over the low de-
lay interface 11. We compare this policy to the case where the
client is restricted to use either of the two interfaces. The measured
completion times for the Web downloads are shown in the boxplot
of Figure 5. Recall that a boxplot displays the median, the spread
and the skewness of all experiments in one plot. The experiment is
repeated 30 times.

Overall, the download time for the Flickr page is smaller than
for the New York Times one although the total size is about equal.
However, the median object size of Flickr is significantly larger.
Moreover, using the high bandwidth interface 12 rather than the
low bandwidth interface is beneficial. Enabling Socket Intent poli-
cies improves the page download performance by more than a fac-
tor of 60% without penalizing the bulk download. The reason is
that the page download can now be scheduled on the network inter-
face i1 and does no longer compete with the bulk download which
has a stronger effect than just having more bandwidth available. We
note that this example is in some sense the best case as we can now
fully use the second network interface. In future work we plan to

299

z 81 s
o o e
£ 7 °
S 2 —_— —
%. o | ¢
g 2
[}
o
© - 1 1
Round Robin Intents Round Robin Intents
New York Times Flickr
Figure 6: Scenario 2 — Boxplot of website loading times.
(o]
0 | —e— i1 only (median, 1st/3rd quantile) o N
o —A— i2 only (median, 1st/3rd quantile) o gl
- —+—Intents (median, 1st/3rd quantile) Ewmww”
Z S -
2 Mgﬂ"“
= haﬂpﬁ
- ) | )
S - " ot
B A
g 2
Q
o
w
9@
o |
< T T T
1000 1500 2000
Filesize [KB]

Figure 7: Scenario 2 — Completion times per object size.

evaluate how the policy can take advantage of multipath transport
protocols such as MPTCP. We predict that using MPTCP will de-
grade the performance of the Web page download while increasing
the performance of the bulk download.

Scenario 2: Offload by Filesize

In our second scenario we utilize the “filesize” intent to enable
the policy to choose the “best” interfaces given that they may have
different characteristics. In our evaluation setup, small transfers
should benefit from the low RTT of i1 while large transfers bene-
fit from the larger bandwidth of i 2. In order to do this, we first have
to find the threshold at which the larger bandwidth of 12 yields to a
smaller completion time than the low RTT of 11. We obtained this
threshold experimentally using an artificial workload consisting of
files from 10 KBytes to 2 MBytes in steps of 10 KBytes which we
download using a single wget instance measuring the completion
time. We know that this approach involves a lot of overhead and
will not work well in practice as the threshold is highly depending
on the RTT and available bandwidth, which will be varying in most
environments. However we will explore a more realistic mecha-
nism to determine this threshold in future work.

Based on that, we then use a policy that offloads transfers to
the high bandwidth interface 12 if the “filesize” is above the ex-
perimentally obtained threshold of 1400 KBytes and uses the low
delay interface i1 otherwise. The results of using each interface
individually compared to using Socket Intents are shown in Fig-
ure 7. Figure 7 includes the median of the 15 experiment runs as
well as the 1st and 3rd quantiles. Note, that the experimental vari-
ability is small as the quantiles hardly differ from the median. We
also see that using the threshold of 1400 KBytes ensures that the
policy is always picking the “best” interface and that the overhead
of wget retrieving the actual filesize with the initial partial request
of 15 KBytes of the two-step download is minimal. Note that the
threshold of 1400 KBytes may appear large but this very much de-
pends on the individual interface parameter, the current client loca-
tion within the network, and the congestion within the network.


www.newyorktimes.com
www.flickr.com/explore
www.flickr.com/explore

While the previous examples shows the principle advantages of
intents, the comparisons can be considered unfair. Thus, we now
compare the previously presented “filesize” policy using an exper-
imentally obtained threshold with an application unaware policy
that uses the two interfaces in a “round-robin” fashion, which alter-
nates between the two interfaces when fetching each object.

To go to a slightly more diverse setting where the website down-
load can take advantage of the different link characteristics, we re-
duce the bandwidth of one of the interfaces to 2 Mbit/s, 117 . This
corresponds to the slower DSL lines common outside of urban en-
vironments [3]. The resulting threshold is 100 KBytes.

As wget is unable to issue parallel requests we download both of
the Web pages at the same time simulating two users that are using
an access point with multiple network interfaces.

The New York Times site benefits from the application unaware
round-robin policy with an improvement in performance by 20%
and 18% vs. the interface 11’ only and the interface 12 only case
while the other does not perform worse (results not shown). The
Web download times for the round-robin and “filesize” policies are
shown in the boxplot of Figure 6. We point out that downloading
the New York Times site benefits significantly from using the “file-
size” intent. Its download time is improved by 35% or, put differ-
ently, using round-robin is 1.5 times slower. For the Flickr site the
completion time advantages are smaller. This is mainly due to the
large number of small objects that benefit more from using the low
latency interface 11’. In conclusion, this experiment highlights
that even a simple application unaware policy can improve perfor-
mance for multi-access devices and application aware policies can
yield even better performance than application unaware ones.

S. SUMMARY

The trend with Internet capable devices has gone from adding a
second network interface to adding the third or even fourth. How-
ever, the benefit to the end-users has been limited as offloading,
while technically feasible, has not yet become standard practice.
One of the limiting factors is good information for choosing which
network interface to use for which communication and therefore
what to optimize for. We propose to resolve the latter with Socket
Intents which enable applications to express what they know about
their communication instead of having to care about that they can
request from the network.

In this paper we propose a realization of Socket Intents via a
modified Socket API, an environment specific policy, and a Mul-
tiple Access Manager (MAM). Our initial results show the poten-
tial benefit of using application intent aware policies for choosing
which combination of interfaces to use.

In future work we plan to expand our exploration of possible
policies that take properties and conditions of the interfaces into
account and adapt to them automatically. For this we are planning
to expand our framework with advanced network statistics, e.g.,
RTT, RSSI, carrier data rate, packet loss or even hints from the
ISPs which can be used like a network weather report. In addition,
we plan to explore the inclusion of newer protocols with path man-
agement capabilities, such as MPTCP, SCTP, and IFOM. So far
our client side is limited to a very simple client, namely wget. We
are planning to add Socket Intent support to a browser as well as
its multimedia plugins. In addition, there is the question of how to
handle multiple requests to the same destination. This may require
added support for pipelining within the MAM.

Moving forward we claim that including the proposed Socket
Intent API together with the MAM within popular OSes may pro-
vide a road towards universally taking advantage of one’s multiple
network interfaces and enabling more elaborate optimizations.

300

6. ACKNOWLEDGEMENTS

This work was supported in part by the EU project CHANGE
(FP7-1CT-257422) http://www.change-project.eu/ and
the EIT KIC project MONC.

7.
(1]

REFERENCES

H. Abbasi, C. Poellabauer, K. Schwan, G. Losik, and
Richard. A quality-of-service enhanced socket api in
gnu/linux. In Real-Time Linux Workshop, 2002.

A. Balasubramanian, R. Mahajan, and A. Venkataramani.
Augmenting mobile 3g using wifi. In ACM MobiSys, 2010.
Bundesministerium fiir Wirtschaft und Technologie.
Breitbandatlas (governmental report on broadband
availability and usage in germany), 2013. http://www.
zukunft-breitband.de/DE/breitbandatlas.
Cisco Systems, Inc. Architecture for mobile data offload over
wi-fi access networks (whitepaper), 2012.

A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar.
Architectural Guidelines for Multipath TCP Development.
RFC 6182 (Informational), Mar 2011.

B. D. Higgins, A. Reda, T. Alperovich, J. Flinn, T. J. Giuli,
B. Noble, and D. Watson. Intentional networking:
opportunistic exploitation of mobile network diversity. In
ACM MobiCom, 2010.

J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and

O. Spatscheck. A close examination of performance and
power characteristics of 4g lte networks. In ACM MobiSys,
2012.

K. Lee, J. Lee, Y. Yi, I. Rhee, and S. Chong. Mobile data
offloading: how much can wifi deliver? In ACM CONEXT,
2010.

E. Nordmark, S. Chakrabarti, and J. Laganier. IPv6 Socket
API for Source Address Selection. RFC 5014
(Informational), Sep 2007.

B. Quoitin, L. Iannone, C. de Launois, and O. Bonaventure.
Evaluating the benefits of the locator/identifier separation. In
ACM/IEEE Workshop on Mobility in the evolving internet
architecture, 2007.

M. Scharf and A. Ford. Multipath TCP (MPTCP)
Application Interface Considerations. RFC 6897
(Informational), Mar 2013.

A. A. Siddiqui and P. Miiller. A requirement-based socket api
for a transition to future internet architectures. In IMIS, 2012.
R. Stewart, M. Tuexen, K. Poon, P. Lei, and V. Yasevich.
Sockets API Extensions for the Stream Control Transmission
Protocol (SCTP). RFC 6458 (Informational), Dec 2011.

D. Thaler, R. Draves, A. Matsumoto, and T. Chown. Default
Address Selection for Internet Protocol Version 6 (IPv6).
RFC 6724 (Proposed Standard), Sep 2012.

M. Wasserman and P. Seite. Current Practices for
Multiple-Interface Hosts. RFC 6419 (Informational), Nov
2011.

M. Welzl, S. Jorer, and S. Gjessing. Towards a
protocol-independent internet transport api. In /CC, 2011.

(2]

(3]

[4

—_

[5

—

[6

—_

[7

—

[8

—_—

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]


http://www.change-project.eu/
http://www.zukunft-breitband.de/DE/breitbandatlas
http://www.zukunft-breitband.de/DE/breitbandatlas

	Introduction
	Socket Intents
	Concept
	Applications Intents
	Policies

	Implementation
	Multiple Access Manager
	Policy
	Augmented Socket Library

	Evaluation
	Summary
	Acknowledgements
	References



