IP Geolocation

TU Berlin
SS 2007
Florian Holzhauer
Overview

- Use cases
- Former approaches
 - Manual
 - Automatic
- Topology based geolocation
 - Idea
 - Improvements
- Comparison/Evaluation
IP Geolocation

- Geolocation of an IP address
- Most current approaches by manually maintained database
 - Expensive
 - Inaccurate
 - Maintenance
- Triangulation techniques
 - Automatically
 - Inaccurate?
Online-Advertising

- Target audience
- Regionalized advertisements
Credit Card Fraud

- Suspicious pattern
 - Geolocation is only one pattern
- Usage of the credit card in different countries on same day
- Usage in non-typical country
Legal issues

- US-Pharma-Ads are prohibited to advertise outside US
- TV/Audio with regional license
- Online-Casinos
Emergency Calls with Voice over IP

- „Röchelanruf“ - unconciousness
- High accuracy needed
- Most complicated use case
Manually maintained Databases

- Several commercial providers
- Community projects
- Problems
 - Outdated
 - Inaccurate
 - Not reliable
 - Expensive
- Benefits
 - Topology not important
 - Medium not important
Goals of automatic approaches

- Improve actuality
- Faster detection
- Cheap
- Usable in environments where manual work is not possible
 - Closed networks
Former automatic approaches

- Usually combination of several ideas
- „Triangulation“ via delay measurement
- Landmarks
 - Known location
- Targets
- PlanetLab
 - „PlanetLab currently consists of 805 nodes at 402 sites.“
GeoPing/Shortest Ping

- GeoPing: Two targets with similar latency are close to each other
 - Passive Landmarks
- Shortest Ping: Each target is assigned to the landmarks location with the smallest latency in between
Constraint Based Geolocation (CBG)

- As GeoPing, but:
 - Initial measurement between all landmarks
 - Relation: Latency - physical distance
 - Triangulation of the target
Speed of Internet (SOI)

- Simplified CBG
- No initial measurements
- Fix "upper limit" for the distance
- Theoretically $\frac{2}{3}$ of speed of light in vacuum
- Practically: $\frac{4}{9}$
Topology Based Geolocation (TBG)

- Improving results by topology knowledge
- Detection of aliased interfaces of a router
TBG steps

- Topology detection via traceroute
 - Both ways between landmarks
 - Estimate per-hop latency
 - Detect aliased interfaces
 - Location hints
 - Geolocate routers and targets simultaneously
Location Hints

- Providerbased
 - Location „encoded“ in Reverse-DNS
 - Not a stand alone method
 - Used for validation
 - DNS Loc
 - Lat/Lon as DNS-Record

- Heuristic
 - High population density
 - High probability

3 ge-4-1-0-101.cr02.ber.de.hansenet.net
4 so-5-1-0-0.cr02.fra.de.hansenet.net
5 po2-0.pr02.decix.de.hansenet.net
6 ffmxs11.decix.ffmpeg.spxs.net (80.81)
7 gie5-1.ulmxs06.mu13.ulm.spxs.net
8 fe---1.r02.n25.obe.in-ulm.de (212)

;; ANSWER SECTION:
theseus.mathematik.uni-ulm.de. 86400 IN LOC 48 25 21.000 N 9 57 22.000 E 612.000
Hop Location

- Routers between landmark and target will be localised
 - Higher accuracy
 - Potential Passive Landmarks
- „Last Router“
 - Last multihomed router
Comparison

- TBG-pure: Only TBG
- TBG-Passive: + passive landmarks
- TBG-undns: Passive & Location Hints
- SOI: Speed of Internet
- CBG: Constraint Based Geolocation
Evaluation

- Three datasets
 - University network, 2 Providers
- Median error
 - Test 1: CBG 689km, SOI 749km, TBG-pure 194km
 - Test 2: CBG 228km, TBG-pure 225km, -passive 176km, -undns 67km
- Location Hints:
 - 5509(*) of 8321 with parseable hints
- Alias Detection:
 - 2392 Alias-Pairs

(*) University Dataset, .edu domains nicht geprast
Summary

- Accuracy about 200km
 - Varies due to topology
- Accurate enough for most use cases
 - Useless for emergency calls
- Best results in combination of algorithms
- „Best algorithm“ varies for use cases
 - Initial measurements
 - Number of landmarks