Digital Signatures

- Used to proof authenticity
- Alternative use of a public key cryptosystem
 - e.g., RSA
- Exchange encryption/decryption steps
 - Often used on a message digest
- More details to come ...

Domain Name System (DNS)

- Map
 - Human memorable hostname
 - e.g.: www.net.in.tum.de
 - Machine usable addresses
 - e.g.: 131.159.15.242
- DNS system
 - Application vital to the Internet
 - Transparent to the user
 - Distributed, hierarchical, redundant
 - Uses caching
Need for “secure” DNS

- DNS: no mechanism for authentication
- 1990’s real world attacks:
 - Show how easy misuse of DNS is
 - Attacks:
 - Spoofing
 - Sniffing + answer injection
 - Guessing and predicting query Ids
 - Cache poisoning
 - Bellovin Usenix95: “Using the Domain Name System for System BreakIns”

DNSSEC: “secure” version of DNS

- Developed over the last 10 years
- Goals:
 - full backward compatibility
 - Data integrity
 - Data authenticity
- Problems:
 - Overhead???
 - Bandwidth
 - Resource consumption: Memory, CPU
 - Deployment issues
 - Key management (PKI)
 - Configuration
DNS

- Distributed database
- Hierarchical name space
 - Based on delegation of responsibility

DNS protocol

- Query ↔ Response (1-to-1 relationship)
- UDP (TCP as fallback)
- DNS message
 - Four sections
 - Query
 - Answer
 - Authority
 - Additional
- Resolution process
 - Iterative
 - Recursive
DNS example

- Iterative queries
- Intermediate name servers
 - Delegated zones
 - Query referral
- Information
 - Resource records (RR)
 - Can be cached
- Query types
 - recursive
 - iterative

DNSSEC (Delegation Signer) Basics

- Idea
 - Authentication chain: root zone to resource record (RR)
 - Parent zone guarantees child zone key
- Realization
 - Four new record types
 - RRSIG signatures for resource records (RRs)
 - DNSKEY public key for the zone (e.g., RSA)
 - DS digest of the child-zone’s DNSKEY
 (at delegation points in parent zone
 child’s name equals DS RR’s name)
 - NSEC needed for certifying non-existence
 - Upward compatibility
 - Islands of security
Resolving with DNS/DNSSEC

- Resolving A www.tum.de.: empty resolver cache

 DNS
 Zone: .
 NS: de.

Resolving with DNS

- Resolving A www.tum.de.: empty resolver cache

 DNS
 Zone: .
 NS: de.
Resolving with DNS

- Resolving A www.tum.de.: empty resolver cache

 DNS
 Zone: . de.
 NS: de. tum.de.

A: www.tum.de
Resolving with DNSSEC

Resolving A www.tum.de.: empty resolver cache

DNS/DNSSEC
Zone: .
NS: de.
DS: de.
RRSIG DS: de.

Resolving with DNSSEC

Resolving A www.tum.de.: empty resolver cache

DNS/DNSSEC
Zone: .
de.
NS: de. tum.de.
DS: de. tum.de.
RRSIG DS: de. tum.de.
Resolving with DNSSEC

- Resolving A www.tum.de.: empty resolver cache

DNS/DNSSEC
Zone: . de. tum.de.
NS: de. tum.de.
DS: de. tum.de.
RRSIG DS: de. tum.de.
RRSIG A: www.tum.de.
DNSKEY: tum.de.
A: www.tum.de
Resolving with DNSSEC

- Resolving A www.tum.de.: empty resolver cache

DNS/DNSSEC
Zone: . de. tum.de.
NS: de. tum.de.
DS: de. tum.de.
RRSIG DS: de. tum.de.
RRSIG A: www.tum.de.
DNSKEY: . de. tum.de.
A: www.tum.de

DNSSEC problems

- Signing and verification are mathematical complex and need computational power
- DNSSEC packets are larger than DNS packets
 - Larger memory footprint for servers
 - Higher network bandwidth needs
 - Larger packets ⇒
 - Fragmentation
 - Truncation
 - Fallback from UDP to TCP

(DNSSEC requires min pkt size: 1220 Bytes (512 DNS)
recommends pkt size: 4000 Bytes)
DNSSEC overhead

<table>
<thead>
<tr>
<th>Type</th>
<th>Overhead (bytes)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNSKEY</td>
<td>18 + key size</td>
<td>RSA or ECC</td>
</tr>
<tr>
<td>DS</td>
<td>36</td>
<td>SHA-1 digest</td>
</tr>
<tr>
<td>RRSIG</td>
<td>46 + key size +</td>
<td>zone</td>
</tr>
<tr>
<td></td>
<td>70 +</td>
<td>zone</td>
</tr>
<tr>
<td>NSEC</td>
<td>23 +</td>
<td>name</td>
</tr>
</tbody>
</table>

- Typical key sizes in bits:
 - RSA: 1024, 1200 [Kolkman, Gieben, 2004]
 - ECC: 136, 144 [Schroepel, Eastlake, 2004]

Results: DNSSEC overhead

<table>
<thead>
<tr>
<th>Type</th>
<th>Count</th>
<th>DNS size</th>
<th>DNSSEC factor</th>
<th>ECC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>Norm</td>
<td>All</td>
<td>Norm</td>
</tr>
<tr>
<td>Query</td>
<td>32.8M</td>
<td>5.1M</td>
<td>1.5G</td>
<td>0.3G</td>
</tr>
<tr>
<td>noErr</td>
<td>20.0M</td>
<td>4.2M</td>
<td>3.7G</td>
<td>0.7</td>
</tr>
<tr>
<td>Final</td>
<td>6.8M</td>
<td>2.5M</td>
<td>1.2G</td>
<td>0.5G</td>
</tr>
<tr>
<td>Referral</td>
<td>10.9M</td>
<td>1.3M</td>
<td>2.3</td>
<td>0.2G</td>
</tr>
<tr>
<td>Empty</td>
<td>2.2M</td>
<td>390K</td>
<td>.2G</td>
<td>44M</td>
</tr>
<tr>
<td>NXDomain</td>
<td>1.4M</td>
<td>500K</td>
<td>.2G</td>
<td>57M</td>
</tr>
</tbody>
</table>

- Queries: almost no overhead
- Answers: Final and Referral OK but Empty, NXDomain expensive
- Answers: RSA about twice as expensive as ECC
- Answers: All about the same as normalized
Results: packet size

<table>
<thead>
<tr>
<th>Size ≤</th>
<th>NXDom</th>
<th>noErr</th>
<th>Final</th>
<th>Ref.</th>
<th>Empty</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSA</td>
<td>1,228</td>
<td>.005</td>
<td>.790</td>
<td>.701</td>
<td>1 .633</td>
</tr>
<tr>
<td>RSA</td>
<td>1,480</td>
<td>.231</td>
<td>.951</td>
<td>.921</td>
<td>1 .996</td>
</tr>
<tr>
<td>RSA</td>
<td>2.056</td>
<td>.999</td>
<td>.979</td>
<td>.991</td>
<td>1 .999</td>
</tr>
<tr>
<td>RSA</td>
<td>4.008</td>
<td>1.000</td>
<td>.999</td>
<td>.999</td>
<td>1 1.000</td>
</tr>
<tr>
<td>ECC</td>
<td>1,228</td>
<td>.998</td>
<td>.999</td>
<td>.998</td>
<td>1 .999</td>
</tr>
<tr>
<td>ECC</td>
<td>1,480</td>
<td>.999</td>
<td>.999</td>
<td>.999</td>
<td>1 .999</td>
</tr>
</tbody>
</table>

- Dig shows default 2056 bytes, 4008 bytes recommended
- 60% of packets not limited by maximum packet sizes (Query, FormErr, ServFail, Refused packets) but less than 1/3 of DNS size and 1/10th of DNSSEC
- noError, NXDomain problematic
 NXDomain: 77% (TR02), 72% (TR04) need fragmentation
- ECC: almost no problem...

Results: referral pkt size

Shapes of densities similar but shifted (+1 DS RR)
Results: DNS vs. DNSSEC size

- Parallel lines: vertical distance 174 bytes
 - same number of authoritative RRsets

CPU usage increase

- Authoritative name servers
 - Due to larger data volume
 - Average CPU usage (five experiments at 1 M queries)

<table>
<thead>
<tr>
<th>Level</th>
<th>#DNS</th>
<th>CPU-time DNS</th>
<th>#DNSSEC</th>
<th>CPU-time DNSSEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.0K</td>
<td>1.0s</td>
<td>6.4K</td>
<td>2.03s</td>
</tr>
<tr>
<td>1</td>
<td>61.8K</td>
<td>11.56s</td>
<td>65.4K</td>
<td>13.85s</td>
</tr>
<tr>
<td>2</td>
<td>176.1K</td>
<td>23.80s</td>
<td>249.1K</td>
<td>39.71s</td>
</tr>
</tbody>
</table>

- Overhead factor 1.1 to 2
- Overhead factor per query 1.3 to 1.6
CPU usage increase

- Caching name servers
 - Due to verification, larger data, stripping of info
 - 218k queries (averaged over 5 experiments)

<table>
<thead>
<tr>
<th>cached</th>
<th>CPU-time DNS</th>
<th>CPU-time DNSSEC</th>
<th>Delay DNS</th>
<th>Delay DNSSEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>292.8s</td>
<td>665.4s</td>
<td>1.8ms</td>
<td>3.9ms</td>
</tr>
<tr>
<td>Yes</td>
<td>37.1s</td>
<td>45.9s</td>
<td>0.2ms</td>
<td>0.2ms</td>
</tr>
</tbody>
</table>

- Without caching: factor 2.3
- Absolute additional delay small
- With caching: factor 1.25

Summary

- Examined cost of wide spread DNSSEC deployment
 - Network bandwidth
 - Resource consumption
- Real world analysis from large client population
- Findings:
 - Increase per packets: avg: 3.4 max: 12.7
 - ECC outperforms RSA
 - Higher memory and CPU requirements

- No apparent show stopper!