Network traffic: Scaling

Ways of representing a time series

Timeseries: information in time domain
Ways of representing a time series

Timeseries: information in time domain
FFT: information in frequency (scale) domain

Timeseries: information in time domain
FFT: information in frequency (scale) domain
Wavelets: information in time and scale domains
Wavelet Coefficients: Local averages and differences

Intuition:
- Finest scale:
 - Compute averages of adjacent data points
 - Compute differences between average and actual data
- Next scale:
 - Repeat based on averages from previous step

Use wavelet coefficients to study scale or frequency dependent properties

Wavelet example
Wavelets

FFT: decomposition in frequency domain

Wavelets: localize a signal in both **time** and **scale**
Discrete wavelet transform

Definition:
- From 1D to 2D: \(X \leftrightarrow \{d_{j,k} : j \in \mathbb{Z}, k \in \mathbb{Z}\} \)
- Wavelet coefficients at scale \(j \) and time \(2^k \)
 \[d_{j,k} = \int X(s) \psi_{j,k}(s) ds, \quad j \in \mathbb{Z}, k \in \mathbb{Z} \]
- Wavelets: \(\psi_{j,k}(t) = 2^{-j/2} \psi(2^{-j} t - k) \)
- Wavelet decomposition: \(X(t) = \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} d_{j,k} \psi_{j,k}(t) \)

Global scaling analysis

Methodology: Exploit properties of wavelet coefficients
- Self-similarity: coefficients scale independent of \(k \)
 \[d_{j,k} \approx 2^{j(1+2H)} \text{ for all } j \]

Algorithm:
- Compute Discrete Wavelet Transform
- Compute energy of wavelet coefficients at each scale
 \[\log_2 E_j = \log_2 \left(\frac{1}{N_j} \sum_k |d_{j,k}|^2 \right) \approx -j(1+2H) \]
- Plot \(\log_2 E \) versus scale \(j \)
- Identify scaling regions, break points, etc.
- Hurst parameter estimation

Ref: AV IEEE Transactions on Information Theory 1998
Motivation

Scaling

- How does traffic behave at different aggregation levels

Large time scales: User dynamics => self-similarity

- Users act mostly independent of each other
- Users are unpredictable: Variability in
 - Variability in doc size, # of docs, time between docs

Small time scales: Network dynamics

- Network protocols effects: TCP flow control
- Queue at network elements: delay
- Influences user experience

How do they interact???
Global scaling analysis (large scales)

\[\text{Energy}_j = \frac{1}{N_j} \sum_k |d_{j,k}|^2 \]

- Trivial global scaling == horizontal slope (large scales)
- Non-trivial global scaling == slope > 0.5 (large scales)

Self-similar traffic
Self-similar traffic

Adding periodicity

- Packets arrive periodically, 1 pkt/2³ msec
- Coefficients cancel out at scale 4
Effect of Periodicity

Actual traffic: Different time periods
Actual traffic: different subnets

A simple topology

Used to measure before bottleneck

Used to vary delay

Used to limit capacity

Clients

- Used to vary delay
 - vary delay
 - access speed
Impact of RTT on global scaling

- **Workload**
 - Web (Pareto dist.)

- **Network**
 - Single RTT delay
 - Examples
 - scale 15 (24 ms)
 - scale 10 (1.3 s)

- **Conclusion**
 - Dip at smallest time scale bigger than RTT
A more complex topology

Impact of different RTTs on global scaling

- Network variability (delay) => wider dip
- Self-similar scaling breaks down for small scales
A more complex topology

Impact of different bottlenecks on global scaling

- Network variability (delay) => wider dip
- Network variability (congestion) => wider dip
- Simulation matches traces without explicit modeling
Impact of different bottlenecks on global scaling

- Network variability (delay) => wider dip
- Network variability (congestion) => wider dip
- Simulation matches traces without explicit modeling
Small-time scaling - multifractal

Wavelet domain:
- **Self-Similarity**: coefficients scale independent of k
- **Multifractal**: scaling of coefficients depends on k

 local scaling is time dependent

Time domain:

Traffic rate process at time t_0 is:
- # of packets in $[t_0, t_0 + \delta t]$

 Self-Similarity: traffic rate is like $(\delta t)^H$
 Multifractal: traffic rate is like $(\delta t)^{\alpha(t_0)}$

Conclusion

Scaling

- **Large time scales**: self-similar scaling
 - User related variability
- **Small time scales**: multifractal scaling
 - Network variability
 - Topology
 - TCP-like flow control
 - TCP protocol behavior (e.g., Ack compression)
Summary

- Identified how IP traffic dynamics are influenced by
 - User variability, network variability, protocol variant
- Scaling phenomena
 - Self-similar scaling, breakpoints, multifractal scaling
- Physical understanding guides simulation setup
 - Moving towards right “ball park”
- Beware of homogeneous setups
 - Infinite source traffic models