Lab Course „RouterLab“

Open Shortest Path First (OSPF)
Miscellaneous

- Don't set enable passwords on Cisco router
- ...

...
OSPF (Open Shortest Path First)

- “Open”: specification publicly available
 - RFC 1247, RFC 2328
 - Working group formed in 1988
 - Goals:
 - Large, heterogeneous internetworks
- Uses the Link State algorithm
 - Topology map at each node
 - Route computation using Dijkstra’s algorithm
- Hierarchy
OSPFv2: Tasks (to be filled in)

- Neighbor discovery and maintenance
 - „Hello“ Protocol
- Link state database
 - kept at each router
 - stores topological information
 - needs to be synchronized with neighbors
- Calculation of routing table
 - Dijkstra
OSPFv2: Components

- Hello Protocol: “Who is my neighbor?”
- Database Synch: “What info am I missing?”
 - after establishing OSPF neighborhood
- Reliable flooding algo: “How do I distribute info?”
 - after something has changed (link failure, cost changes)
- Route computation
 - Based on link state database
 - Using Dijkstra’s algorithm
OSPF Packets

- IP Protocol #89
- Directly to neighbors using Multicast address ⇒ TTL 1
- Five packet types
 - Hello
 - Database Description
 - Link State Request
 - Link State Update
 - Link State Acknowledgement
Neighbor Discovery and Maintenance

- **Hello Protocol**
 - Ensures that neighbors can send packets to and receive packets from the other side: bi-directional communication
 - Ensures that neighbors agree on parameters (HelloInterval and RouterDeadInterval)

- **How**
 - Hello packet to fixed well-known multicast address
 - Periodic Hellos
Link State Database

- Based on link-state technology
 - Local view of topology in a database

- Database
 - Consists of Link State Advertisements (LSA)
 - LSA: data unit describing local state of a network/router → **different LSA types**!
 - Must kept synchronized to react to routing failures
Database synchronization

- Central aspect:
 all routers need to have identical databases!

- 2 types of synchronization
 - Initial synchronization
 - After hello
 - Continuous synchronization
 - Flooding
Initial Synchronization

- Explicit transfer of the database upon establishment of neighborship
- Once bi-directional communication exists
- Send all LS **header** from database to neighbor
 - OSPF database description packets (DD pkt)
 - Flood all future LSA’s
Initial Synchronization (2.)

- Database description (DD) exchange
 - Only one DD at a time
 - Wait for Ack
- Control of DD exchange
 - Determine which LSA’s are missing in own DB
 - Request those via link state request packets
 - Neighbor sends these in link state update packets
- Result:
 - Fully adjacent OSPF neighbors
Database Synchronization - Example

10.1.1.4

OSPF Hello

OSPF Hello: I heard 10.1.1.6

Database Description: Sequence = x

DD: Sequence = x, 5 LSA Headers =
(router-LSA, 10.1.1.1, 0x80000004),
..........

DD: Sequence = x+1, 1 LSA Header =
(router-LSA, 10.1.1.1, 0x80000004)
...

DD: Sequence = x+1

10.1.1.6
Reliable Flooding

- E.g., after something changes
 - link failure
 - OSPF cost change for a link

- Robustness
 - LSA refreshes every 30 minutes
 - LSAs have checksums
 - LSAs are aged
 - LSAs cannot be send at arbitrary rate: there are timers
Calculation of routing table

- Link state database is a directed graph with costs for each link
- Use Dijkstra to compute paths from source to all destinations
- More info on Dijkstra: Check the web ...
Network Types

- So far only point-to-point
- Many other technologies
 - Point-to-point
 - Broadcast
 - ...

Hierarchical OSPF
Hierarchical OSPF

- **Two-level hierarchy**: local area and backbone.
 - Link-state advertisements do not leave respective areas.
 - Nodes in each area have detailed area topology; they only know direction (shortest path) to networks in other areas.

- **Area Border routers**: “summarize” distances to networks in the area and advertise them to other Area Border routers.

- **Backbone routers**: run an OSPF routing algorithm limited to the backbone.

- **Boundary routers**: connect to other ASs.
Areas

- An AS (or Routing Domain) is divided into areas.
- Group of routers
- “Close” to each other.
- Reduce the extend of LSA flooding
- Intra-area traffic
- Inter-area traffic
- External traffic: injected from a different AS
- OSPF requires a backbone area (Area 0)
 - Routing between areas only via backbone area
 - Strict area hierarchy (no loops allowed)
OSPF: Summary

- Neighbors
 - Discovery: Multicast group
 - Maintenance: Hello protocol

- Database
 - Granularity: Link state advertisements (LSA)
 - Synchronization: Initial synchronization
 Reliable flooding

- Routing table
 - Calculation: Local shortest path calculation
Lab Course „RouterLab“

Worksheet 3: Questions
Quagga (Question 1)

- „Software router“ for various platforms
- Supports many routing protocols
- Collection of several daemons
 - zebra: „communication“ with kernel and integration of all daemons
 - ripd: RIP support
 - ospfd: OSPF support
 - ...
- User interface shell: VTY
- Apart from that: Similar configuration as on previous work sheets
 - if you wish you can reuse existing dumps
Work sheet 3

- Question 2
 - basic OSPF setup
 - reachability over multiple hops

- Question 3
 - Link-State Database
 - Database Synchronization
Question 4

- Link state database is a directed graph with costs for each link

- Dijkstra’s SPF algorithms
 - Add all routers to shortest-path-tree
 - Add all neighbors to candidate list
 - Add routers with the smallest cost to tree
 - Add neighbors of this router to candidate list
 - If not yet on it
 - If cost smaller
 - Continue until candidate list empty

- “Run the algorithm by hand“!
Question 5

· OSPF costs
· OSPF hierarchy, areas
· intra- and interarea paths