The World Wide Web (WWW) is the most essential component of today’s Internet. Users generate requests and web-servers provide the desired contents. Therefore it is necessary for any TEST-LAB setup to generate web-traffic which possesses similar characteristics as those observed in the real Internet. Examples of such characteristics are inter-arrival times, distribution of server file sizes, number of concurrent sessions, etc. This process of artificially generating web-traffic is known as web-workload generation. The purpose of this worksheet is twofold: First we learn how to generate web-traffic using different tools for experimentation purposes. Second we will learn an additional method of monitoring traffic using flows. By definition ‘A flow is an aggregation of similar packets that are close in time’.

The most common type of flows are Five-Tuple Flows which is the result of aggregating packets with the same source/destination IP address and port number and by the transport protocol: (SRCIP, SRC-PORT,DSTIP,DSTPORT,PROTOCOL). Note that according to this definition flows are uni-directional! A flow ends when there has not been a matching packet for a certain time called inactivity timeout (usually 15 seconds). In the case of TCP, a flow can also be terminated by a FIN or a RST packet. Flows carry with them information like start and end time of a flow or number of bytes and number of packets contained in a flow. For this purpose we will use netflow version 5 on Cisco Router.

<table>
<thead>
<tr>
<th>Group</th>
<th>Ham-Cloud</th>
<th>Muc-Cloud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
<td>ham-rc1</td>
<td>muc-rc1</td>
</tr>
<tr>
<td>Switches</td>
<td>ham-sc1</td>
<td>muc-sc1</td>
</tr>
<tr>
<td>Loadgens</td>
<td>loadgen104, loadgen105, loadgen106</td>
<td>loadgen102, loadgen107, loadgen108</td>
</tr>
<tr>
<td>IP range</td>
<td>10.1.0.0/16</td>
<td>10.2.0.0/16</td>
</tr>
</tbody>
</table>

Question 1: (20 Points) Basic Setup Configuration

In this question, we will build the basic setup for web workload generation.

(a) First of all you need to establish connectivity between your web-client and web-server as shown in Figure 1. Your configuration must satisfy the following conditions:

1. Configure VLANs as shown in Figure 1.
2. Both client and server as shown in Figure 1 must ping each other under the condition that there is no (!) overlap in IP address range used for the links between i) web-client and rc1. ii) rc1 and monitoring Loadgen. iii) rc1 and web server.
3. You should be able to do traceroute from web client to web-server through rc1.

(b) Submit a logical topology map that shows your IP address assignment.

Question 2: (20 Points) Workload Generation with iperf

Frequently, it is desired to test the “quality” of a link or path over which packets are sent. For this purpose iperf can be used.

(a) Install iperf using apt-get install iperf on both web-client and web-server. Read man page of iperf and find out how it can be used in client and server mode. First start one iperf process as server on the web-client loadgen and then start another process on the same web-client loadgen. Observe the following parameters for multiple iterations.
Figure 1: Topology – Basic Configuration for Web Workload Generation

- TCP throughput/bandwidth.
- Latency\(^1\)
- Maximum segment size (MSS)
- TCP window size

(b) Now start one `iperf` process on web-client loadgen as client and one `iperf` process on web-server loadgen as server and observe the same parameters as in Question 2a) for multiple iterations. Submit a table for at least five iterations showing results of Question 2a) and 2b).

(c) Did you observe differences in the values that you obtain in Question 2a) and Question 2b). Explain which parameters are changing. What are the possible factors which are causing these changes?

(d) Can `iperf` perform bidirectional bandwidth measurement? If yes how?

Question 3: (30 Points) Web workload Generation with Harpoon

(a) In order to monitor traffic and to find out how much bandwidth is currently being used, you need tools such as `mrtg` or `iptraf`. In this worksheet we will use only `iptraf`. Install `iptraf` on your loadgens using `apt-get install iptraf`. Read `man` page of `iptraf` and find out how it can be used.

(b) *Harpoon* is a web-workload traffic generator which is used for realistic web traffic generation in a lab environment. In this question you will learn how to generate traffic in greater volume. We have provided you a compiled version of *Harpoon* that you can find at `/usr/local/harpoon` of your loadgen image. There you also find a folder `RouterLab` with the two files `web-client.xml` and `web-server.xml` which will be used for traffic generation. Analyse these files carefully and explain in short what 'active sessions', 'file sizes' and 'interconnection times' means.

(c) Read the manual of Harpoon at http://pages.cs.wisc.edu/jsommers/harpoon/ and find out what options are available.

(d) For generating default traffic with Harpoon, you do not need to modify `web-server.xml` file but you need to modify the following lines at the end of `web-client.xml` file according to your IP assignment.

\[^1\text{Use ping}\]
Here x.x.x.x/32 is the web client IP address and y.y.y.y/32 is the web server IP address.

First start Harpoon server process on web server loadgen using the following command.

```
./harpoon -f RouterLab/web-server.xml -v10 -w300
```

Use `netstat -an` to confirm that your web server is now in 'Listening mode'. Then start the Harpoon client process on web client loadgen using the following command.

```
./harpoon -f RouterLab/web-client.xml -v10 -w300 -c
```

You can stop any Harpoon process using `ctrl-c`. Use `iptraf` and observe how much traffic is being generated in both directions. Also observe which IP addresses and ports are used for web-traffic. Use the following commands on `rc1` and `sc1` to observe traffic.

```
show interfaces <interface> | include bits
```

By default interface statistics are updated every 5 minutes. You should change this interval to 30 seconds on all interfaces that you are monitoring using the following command in interface configuration mode.

```
load-interval 30
```

Submit the web traffic data rate you observe with these default Harpoon files in both directions.

(e) Find out how different web traffic data rates can be generated by reading the Harpoon documentation. Try different iterations and find out what maximum throughput you can achieve over the setup of Figure 1. Submit your web-client.xml configurations you use to achieve maximum throughput.

Question 4: (30 Points) Configuring Netflow on Cisco Router

You have already used `tcpdump` many times for packet-level capturing. Now you will learn how to capture aggregated data from routers in the form of flows.

(a) Configure `Netflow Version 5` on rc1 with the following commands. You need to configure the IP address 100.100.100.100/32 on interface loopback 0. Choose port 7777 as destination port for exporting flows to the flow-collector loadgen.

- At global configuration mode.


  ```
  ip flow-export source Loopback0
  ip flow-export version 5
  ip flow-export destination <destination_ip> <destination_port>
  ```

- At interface configuration mode on interface from where you want to get flows.

  ```
  interface <sub-interface>
  ip flow ingress
  ```

 To verify that flows are exported correctly use `sh ip flow export` command.

2 You need to modify web-client.xml only

3 Submit only the parameters you change not the whole file
(b) You need a tool which can capture flow data. For this purpose you can use flow-tools which is a software package for collecting and processing NetFlow data from Cisco and Juniper routers. For this worksheet you need only flow-capture for collecting flows from rc1 router and flow-report which generate reports from flow data. Install flow-tools using apt-get install flow-tools on your monitoring/flow-collector loadgen. Read man pages of different flow-tools utilities and capture the flows in /tmp/flows directory of your monitoring loadgen for at least five minutes of web traffic using the Harpoon web workload generator as in Question 3. Now generate a flow report from these files. Explain what you see in the flow report. Submit the output of flow-report along with the commands used for generating flow-report.

(c) Submit graphs for 'Packets per flow distribution', 'Octets/Bytes per flow distribution' and 'Flow Time distribution' from the data you obtain in the flow-report with

1. default Harpoon configuration.
2. Harpoon configuration with maximum throughput obtained in Question 3e).

(d) Compare the graphs you obtained in Question 4c). Are there any differences in these graphs? If yes, what are the possible factors which cause these differences.

For submission details please check the FAQ:
http://www.net.t-labs.tu-berlin.de/teaching/ss08/RL_labcourse/
Due Date: Friday, July 11th, 2008, 08:00 am

4(https://www.splintered.net/sw/flow-tools/)
5Use flow-cat along with flow-report