Exploring Alternative Internet Architectures

HAIR: Hierarchical Architecture for Internet Routing
Approach

Key ideas
- Separation of locator/identifier function of IP address
 => separation of routing and location mapping
- **Hierarchy** for routing and location mapping

Two components
- Routing system based on locator
- Mapping system to map an identifier to a locator
Hierarchical routing

- Network is organized in multiple levels
- Levels are separated by separators
- Routers only know the details about their level
Hierarchical routing: Internet

- Where do we have small separators?
- Internet structure
 - Core
 - Set of interconnected autonomous systems (ASs)
 - Tier-1, tier-2 ASs, ...
 - Transit ASs
- AS core
 - ~5000 ASs
- AS edge
 - ~30000 AS
- **AS core**
 - ~5000 ASs
- **AS edge**
 - ~3000 AS

Potential large separator

Potential small separator

Core

Enterprise Network

ISP1

ISP2

ISP3

Transit AS 1

Transit AS 2

Access Provider

Stub AS
Hierarchical routing: Internet

- Where do we have small separators?
- Internet structure
 - Core
 - Set of interconnected autonomous systems (ASs)
 - Tier-1, tier-2 ASs, ...
 - Transit ASs
 - Intermediate
 - Stub ASs, e.g., metropolitan area networks
 - Enterprise networks
 - Content distribution networks
 - Edge
 - Local area networks
Hierarchical routing: Internet

- **Separator size**
 - Core → Intermediate
 - Stub ASs, e.g., metropolitan area networks: < 10 links
 - Enterprise networks: < 10 links
 - Content distribution networks: < 1000 links
 - Intermediate → Edge
 - Local area networks: < 10 links

- **Terminology**
 - Core / WAN
 - Intermediate / MAN
 - Edge / LAN
 - Separator / Attachment point (AP)
Hierarchical network

- Example: Three levels of hierarchy
 - Routing via intermediate points – the separators
 => specify attachment points
 - WAN APs: WAP
 - Provider access links
 - MAN APs: MAP
 - Firewalls
Sending a packet

- Routing via intermediate access points
 - Mapping service: resolve identifier to locator
 - 3 locator parts: WAP|MAP|ID
Routing scalability

- **Core**
 - Routing based on WAPs
 - Stable business relationships
 - Almost no churn
 - Aggregatable addresses
 - Common routing protocol (e.g., BGP)

- **Intermediate (smaller ISPs/enterprises)**
 - Routing based on MAPs
 - Separate addresses and routing
 - Local changes → local impact

- **Edge (e.g., Ethernet LAN)**
 - Standard L2 switching
Mapping system

- **Design requirements**
 - Scales with number of hosts
 - Fast response times
 - Easy to update

- **Approach**
 - Clients are responsible
 - Hierarchical design
 - Global DHT or DNS like system
 - For each identifier: pointer to MMS
 - WANs contribute resources
 - MAN mapping service (MMS)
 - Stores locators for attached nodes
 - Provided by MAN(s)
Mapping identifiers to locators

- Steps
 - Client queries
 - Global DHT
 - MMS
 - To avoid lookups
 - Use caching
 - Include source locators in packet
 - ...
 - Global DHT/MMS
 - Can store multiple alternatives
 - Failure recovery
 - Via multiple alternatives
Discussion (1)

 Scalability
 - Hierarchical routing AND mapping system
 - Updates are localized => low update rates
 - No manual configuration

 Mobility: local visibility of changes
 - Intra-MAN mobility: frequent
 - Updates restricted to MMS
 - Inter-MAN mobility: less frequent
 - Update global DHT (fast)
 - Move locators to new MMS
Discussion (2)

• Multihoming
 ▪ Inherent support: APs exposed to routing system

• Multipath
 ▪ Use multiple locators in parallel

• Inbound traffic engineering
 ▪ Per-host basis
 ▪ MANs/MMS have control

• Migration path
 ▪ To support legacy hosts
Migration via NATs/Firewalls: Sending

- Firewalls/NAT act as MAPs
- Legacy packet arrives from LAN
 - Treat dst address as dst ID
 - Resolves locator for ID
 - Add source locator to packet header
 - Encapsulate original packet and sends it
Migration: Receiving

- WAP strips encapsulation
- MAP/NAT strips the second layer
 - May get the mapping for the source locator
- Packet is routed onward
What’s different here

- Routing hierarchy based on structure of the Internet
 - Smaller table sizes
 - Lower update rates
- Mapping service is hierarchical
 - With local control and responsibility
- Hosts are responsible for obtaining mapping
- Incremental deployment possible
Lessons learned

- Main goals
 - Scalability
 - Support for multi-homing, TE, mobility, etc.
 - Smooth migration, support for legacy hosts

- Key ideas
 - Separation of locator/identifier function of IP address
 - Hierarchical routing and location mapping scheme

- Two components
 - Routing system based on locator
 - Mapping system to map an identifier to a locator