Wireless Internet Routing

Optimized Link State Routing (OLSR) Algorithm and Other Standards

Optimized Link State Routing (OLSR)

- [Jacquet00ietf,Jacquet99Inria]
- RFC 3626 http://www.ietf.org/rfc/rfc3626.txt
- Proactive / link state algorithm for wireless ad hoc and mesh networks
OLSR Overview

- Neighbor discovery
- MPR flooding mechanism
- Topology diffusion mechanism
- Attached networks diffusion

Neighbor Discovery

- Periodic exchange of HELLO messages
 - Link sensing
 - List neighbors
 - Neighbors "Quality"
 - MPR selection
- To maintain link, neighbor, 2-hop neighbor, MPR
OLSR Generic Packet Format

<table>
<thead>
<tr>
<th>Bits:</th>
<th>0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6</th>
<th>Packet Length</th>
<th>Packet Sequence Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLSR header:</td>
<td>Message:</td>
<td>Message Type</td>
<td>Vtime</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time To Live</td>
<td>Hop Count</td>
</tr>
<tr>
<td></td>
<td>Message:</td>
<td>Message Type</td>
<td>Vtime</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time To Live</td>
<td>Hop Count</td>
</tr>
</tbody>
</table>

Hello Packet Format

| Bits: | 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 | Reserved | Htime | Willingness |
|-------|--|----------|-----------|
| Link Code | Roamed | Link Message Size |
| Neighbor Interface Address |
| Neighbor Interface Address |
| ... |
| Link Code | Roamed | Link Message Size |
| Neighbor Interface Address |
| Neighbor Interface Address |

Link code: contains "link type" and "neighbor type"

Htime: Hello emission interval
Willingness: willingness to carry and forward
Multipoint Relays (MPR) Flooding

- The overhead of flooding link state information is reduced by requiring fewer nodes to forward the information.
- A broadcast from node X is only forwarded by its multipoint relays.
- Multipoint relays of node X are its neighbors such that each two-hop neighbor of X is a one-hop neighbor of at least one multipoint relay of X.
 - Each node transmits its neighbor list in periodic beacons, so that all nodes can know their 2-hop neighbors, in order to choose the multipoint relays.

Flooding vs MPR
Optimized Link State Routing (OLSR)

- Nodes C and E are multipoint relays of node A

Node that has broadcast state information from A

Optimized Link State Routing (OLSR)

- Nodes C and E forward information received from A

Node that has broadcast state information from A
Optimized Link State Routing (OLSR)

- Nodes E and K are multipoint relays for node H
- Node K forwards information received from H
 - E has already forwarded the same information once

![Diagram of network with nodes A, B, C, D, E, F, G, H, J, K]

Node that has broadcast state information from A

Topology Diffusion

- OLSR declares partial topology
 - All destinations
 - Subset of links
 - Only those which represent MPR selections
 - Only subset of nodes declare topology (MPR)
- How?
 - MPR nodes transmit TC (topology control) messages (periodically)
 - TC message contains MPR selector set of the source
 - MPR selector set: enumerates nodes that have selected it as an MPR node
 - TC can be triggered by link failures
Topology Diffusion

- Forwarding path for TC messages not shared among all nodes
 - Varies depending on the source

Topology Control Packet Format

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>ANSN</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANSN: Advertised Neighbor Sequence Number
Home Network Address (HNA)

- TC disseminate host routes
- HNA disseminate network route advertisements

OLSR Summary

- OLSR floods information through the multipoint relays
- The flooded information itself is for links connecting nodes to respective multipoint relays
- Routes used by OLSR only include multipoint relays as intermediate nodes
Ongoing Work in the MANET WG

- **DYMO**

- **NHDP**

Dynamic On-Demand (DYMO) Routing

- **On-demand**
- **Route discovery (RREQ-RREP)**
- **Route maintenance**
 - To preserve routes in use, DYMO routers extend route lifetimes upon successfully forwarding a packet.
 - RERR: When a data packet is received for forwarding and a route for the destination is not known or the route is broken, then the DYMO router of source of the packet is notified.
- **Sequence numbers to ensure loop freedom**
- **Bidirectional links**
Neighborhood Discovery Protocol (NHDP)

- Discover 1-hop and symmetric 2-hop neighbors
- Local 1-hop broadcast
- Advertises the presence of a router and its interface addresses.
 - Discovers links from neighboring routers.
 - Performs bi-directionality checks on the discovered links.
 - Advertises discovered links, and whether each is symmetric, to its 1-hop neighbors, and hence discovers symmetric 2-hop neighbors.