Internet Security

Prof. Anja Feldmann, Ph.D.
anja@net.t-labs.tu-berlin.de
http://www.net.t-labs.tu-berlin.de/

Prof. Dr. Jean-Pierre Seifert
jpseifert@sec.t-labs.tu-berlin.de
http://www.sec.t-labs.tu-berlin.de/

General information

- Area: BKS – Hauptstudium Vertiefer
 - Will be integrated into a Module system of SECT and INET
- Time
 - Thursday: 14:00 – 16:00
- Room
 - MA 043
- Language
 - English (questions can be asked in German!)
- Web site
 - http://www.net.t-labs.tu-berlin.de/teaching/ss09/is_ss09/
- Mailing list
 - see Web page
General information

- Exam
 - For those that need it 😊
 - Oral or written exam after semester end (depends on # of participants)

- Prerequisite: some knowledge of
 - How the Internet works
 - How operating systems work
 - Little bit of undergraduate math for cryptography

- Additional contact persons:
 - Gregor Maier (INET) and Collin Mulliner (SECT)

What is this course about?

- Network security? Not quite!

- Focus:
 - Security of networked **applications**
 - Security of Web browsers
 - Protection of network **infrastructure**
Topics

- Basics of secure network protocol design
 - Using cryptography (not a cryptography class!)
 - The role of correct software

- Practical focus
 - This is not a pure academic-style course
 - You’ll see real security holes
 - A lot of (in)security is about doing the unexpected
 - “Think sideways”

How to think about insecurity

- Bad guys don’t follow rules
- Need to understand what sort of attacks are possible to compromise a system
 - Prerequisite to understand what to protect in a system!
- This is not the same as actually launching them!
 - Taking a security class is not an excuse for hacking
 - Hacking is any form of unauthorized access, including exceeding authorized permissions
 - The fact that a file or computer is not properly protected is no excuse for unauthorized access
Reading

- ... (see Web)

- Research papers (see Web)

Network security

Overview
Dichotomy: hosts

- Is (or can be) well-controlled
- There are well-developed authentication and authorization models
- Strong notion
 - Of „privileged“ state
 - What programs can use/do

Dichotomy: networks

- None of the above
- Anyone can (and does) connect to the network
- Connectivity can only be controlled in very small, well-regulated environments, and maybe not even then
- Different OS have different – or no – notions of userIDs and privileges

=> notions of privilege is missing
Networking

- Networks interconnect
- Networks always interconnect
- Interconnections happen everywhere 😊 but mainly at the edges

Failures

- Benign failures
 - Most network failures are benign
 - Programs allow for such failures
 - Data corruption
 - Timeouts
 - Dead hosts
 - Routing problems
 - ...

- Rule of thumb:
 - Anything that can happen by accident can happen malicious
 - -> much more dangerous!
Principle: trust nothing

- A host can/should trust **nothing** that comes over the wire!
- Any desired protections have to be explicitly supplied
- There may be help from lower layers that supply protection
 - Yet those layers have to be based on the same principle!
 - Research on such lower layer protection is a very hot topic and far from being solved!
Attitude question

- **Unproductive attitudes**
 - “Why would anyone ever do that?”
 - “That attack is too complicated”
 - “No one knows how this system works, so they can’t attack it”

- **Better attitudes**
 - “Programming Satan’s Computer” (Ross Anderson)
 - “Assume that serial number 1 of any device is delivered to the enemy”
 - “You hand your packets to the enemy to deliver; you receive all incoming packets from the enemy”

Network security tools

- Cryptography
- Network-based access control (firewalls and more)
- Monitoring
- Protocol analysis by formal verification
- *Paranoid design!*
Protocol design

- Heavy use of crypto and authentication
- Ensure that sensitive fields are protected
- Make authentication bilateral
- Figure out the proper authorization
- Defend against
 - Eavesdropping
 - Modification
 - Deletion
 - Replay
 - And combinations thereof

Buggy software

- Most network security holes are due to buggy code
- A buggy network-connected program is an insecure one 😞
- Correct coding counts for a lot!
Course overview

- Introduction
 - Attacks and threats, cryptography overview
 - Authentication (Kerberos, SSL)
- Applications
 - Web, browser, email, ssh
- Lower layer network security
 - NAT, (IPsec), firewalls
- Monitoring / information gathering
 - Intrusion detection, network scans
- Availability
 - Worms, denial of service, network infrastructure