Crypto Basics

Cryptography Overview
Public vs. Private Key Cryptography
Classical / ancient ciphers
Modern ciphers: DES
Recent cipher: AES

What is a cryptosystem?

- $K = \{0,1\}^l$
- $P = \{0,1\}^m$
- $C' = \{0,1\}^n$, $C \subseteq C'$
- $E: P \times K \rightarrow C$
- $D: C \times K \rightarrow P$
- $\forall p \in P, k \in K: D(E(p,k),k) = p$
 - It is infeasible to find inversion $F: P \times C \rightarrow K$

Let's start again!
This time in English
What is a cryptosystem?

- A pair of algorithms that take a **key** and convert **plaintexts** to **ciphertexts** and backwards later
 - **Plaintext**: text to be protected
 - **Ciphertext**: should appear like random

- Requires sophisticated math!
 - Do not try to design your own algorithms!

The language of cryptography

- **Symmetric or secret key crypto**: sender and receiver keys are identical and **secret**
- **Asymmetric or Public-key crypto**: encrypt key public, decrypt key secret
Attacks

- Opponent whose goal is to break a cryptosystem is the adversary
 - Assume adversary knows algorithm used, but not key

- Three types of attacks:
 - ciphertext only:
 - adversary has only ciphertext; goal is to find plaintext, possibly key
 - known plaintext:
 - adversary has ciphertext, corresponding plaintext; goal is to find key
 - chosen plaintext:
 - adversary may supply plaintexts and obtain corresponding ciphertext; goal is to find key

Basis for Attacks

- Mathematical attacks
 - Based on analysis of underlying mathematics

- Statistical attacks
 - Make assumptions about the distribution of letters, pairs of letters (digrams), triplets of letters (trigrams), etc.
 - Called models of the language
 - Examine ciphertext, correlate properties with the assumptions.
Example: Symmetric key cryptography

Substitution cipher: substituting one thing for another

- Monoalphabetic cipher: substitute one letter for another
 plaintext: abcdefghijklmnopqrstuvwxyz
 ciphertext: mnbvcxzasdfghjklpoiuytrewq

 E.g.: Plaintext: bob. i love you. alice
 ciphertext: nkn. s gktc wky. mgsbc

Monoalphabetic Cipher Security

- Total of $26! = 4 \times 1026$ keys
- So many keys, might think is secure
- !!!WRONG!!!
- Problem is language characteristics
Language Redundancy and Cryptanalysis

- Human languages are **redundant**
- Eg "th lrd s m shphrd shll nt wnt"
- Letters are not equally commonly used
- In English E is by far the most common letter
 - followed by T,R,N,I,O,A,S
- Other letters like Z,J,K,Q,X are fairly rare
- Have tables of single, double & triple letter frequencies for various languages

English Letter Frequencies

![Histogram of English Letter Frequencies](image)
Use in Cryptanalysis

- Key concept
 - monoalphabetic substitution ciphers do not change relative letter frequencies

- Discovered by Arabian scientists in 9th century

- Calculate letter frequencies for ciphertext

- Compare counts/plots against known values

- For mono-alphabetic must identify each letter
 - tables of common double/triple letters help

Properties of a good cryptosystem

- There should be no way short of enumerating all possible keys to find the key from any reasonable amount of ciphertext and/or plaintext, nor any way to produce plaintext from ciphertext without the key

- Enumerating all possible keys must be infeasible

- The ciphertext must be indistinguishable from true random values
Milestones in modern cryptography

- 1883 Kerckhoffs’ principles
- 1917-1918 Vernam/Mauborgne cipher (one-time pad)
- 1920s-1940s Mathematicization and mechanization of cryptography and cryptanalysis
- 1973 U.S. National Bureau of Standards issues a public call for a standard cipher; this led to the adoption of the Data encryption Standard (DES)

Milestones in modern cryptography: Public key cryptography

- Merkle invents a public key distribution scheme
- 1976: Diffie and Hellman invent public key encryption and digital signatures, but do not devise a suitable algorithm with all desired properties
- 1977: Rivest, Shamir, and Adelman invent their algorithm RSA soon after
 - His discovery, however, was not revealed until 1997 due to its top-secret classification, and Rivest, Shamir, and Adleman devised RSA independently of Cocks’ work.
Kerckhoffs’ law

- “The system must not be required to be secret, and it must be able to fall into the hands of the enemy without inconvenience”

- In other words, the security of the system must rest entirely on the secrecy of the key not the algorithm itself

Vernam/Mauborgne cipher

- Exclusive-OR a key stream tape with the plaintext

- Online encryption of teletype traffic, combined with transmission

- For a one-time pad – which is provably secure – use true-random keying tapes and never reuse the keying material

- Problem: how to get good long one-time pads
 - Reuse of keying material ⇒ stream cipher
 - Key stream via algorithm ⇒ no one-time pad
Mathematicization and mechanization

- Mechanical encryptors
 (Vernam, Enigma, Hagelin, Scherbius)

- Mathematical cryptanalysis
 (Friedman, Rejewski et al., Bletchley Park)

- Machine-aided cryptanalysis
 (Friedman, Turing et al.)

Hagelin Rotor Machine
Standardized ciphers

- Until the 1970s, most strong ciphers were government secrets
- Spread of computers ⇒ new threads
 (Reportedly, soviets eavesdropped on U.S. grain negotiators’ conversations)
- NBS (now called NIST) issued public call for cipher; eventually IBM responded
 ⇒ eventual result – via secret process - DES

What we have today

- Encryption is completely computerized and operates on bits
- Basic primitives can be combined to produce powerful results
 - Difficult to verify combined result.
- Encryption is by far the strongest weapon of computer security
- Host and OS software is by far the weakest link
- Bad software breaks crypto – NEVER the cryptanalysis.
Modern Block Ciphers

- Look at modern block ciphers
- One of the most widely used types of cryptographic algorithms
- Provides secrecy / authentication services
- Focus now on DES (Data Encryption Standard)
- Illustrate block cipher design principles

Block vs. Stream Ciphers

- Block ciphers process messages in blocks, each of which is then en/decrypted
- Like a substitution on very big characters
 - 64-bits or more
- Stream ciphers process messages a bit or byte at a time when en/decrypting
- Many current ciphers are block ciphers
- Broader range of applications
Block Cipher Principles

- most symmetric block ciphers are based on a so called Feistel Cipher Structure
- needed since must be able to decrypt ciphertext to recover messages efficiently
- block ciphers look like an extremely large substitution
- would need table of 2^{64} entries for a 64-bit block
- instead create from smaller building blocks
- using idea of a product cipher

Ideal Block Cipher

![Diagram of Ideal Block Cipher]
Claude Shannon and Substitution-Permutation Ciphers

- Claude Shannon introduced idea of substitution-permutation (S-P) networks in 1949 paper
- form basis of modern block ciphers
- S-P nets are based on the two primitive cryptographic operations seen before:
 - substitution (S-box)
 - permutation (P-box)
- provide confusion & diffusion of message & key

Confusion and Diffusion

- cipher needs to completely obscure statistical properties of original message
- a one-time pad does this
- more practically Shannon suggested combining S & P elements to obtain:
 - diffusion – dissipates statistical structure of plaintext over bulk of ciphertext
 - confusion – makes relationship between ciphertext and key as complex as possible
Feistel Cipher Structure

- Horst Feistel devised the *feistel cipher*
 - based on concept of invertible product cipher

- partitions input block into two halves
 - process through multiple rounds which
 - perform a substitution on left data half
 - based on round function of right half & subkey
 - then have permutation swapping halves

- implements Shannon’s S-P net concept
Feistel Cipher Design Elements

- block size
- key size
- number of rounds
- subkey generation algorithm
- round function
- fast software en/decryption
- ease of analysis
Data Encryption Standard (DES)

- most widely used block cipher in world
- adopted in 1977 by NBS (now NIST)
 - as FIPS PUB 46
- encrypts 64-bit data using 56-bit key
- has widespread use
- has been considerable controversy over its security

DES History

- IBM developed Lucifer cipher
 - by team led by Feistel in late 60’s
 - used 64-bit data blocks with 128-bit key
- then redeveloped as a commercial cipher with input from NSA and others
- in 1973 NBS issued request for proposals for a national cipher standard
- IBM submitted their revised Lucifer which was eventually accepted as the DES
DES Design Controversy

- although DES standard is public

- was considerable controversy over design
 - in choice of 56-bit key (vs Lucifer 128-bit)
 - and because design criteria were classified

- subsequent events and public analysis show in fact design was appropriate

- use of DES has flourished
 - especially in financial applications
 - still standardised for legacy application use

DES Encryption Overview

![DES Encryption Diagram]

33

34
Initial Permutation IP

- first step of the data computation
- IP reorders the input data bits
- even bits to LH half, odd bits to RH half
- quite regular in structure (easy in h/w)

 - example:

 \[\text{IP}(675a6967 \ 5e5a6b5a) = (ffb2194d \ 004df6fb) \]

DES Round Structure

- uses two 32-bit L & R halves
- as for any Feistel cipher can describe as:
 \[
 L_i = R_{i-1} \\
 R_i = L_{i-1} \oplus F(R_{i-1}, K)
 \]
- F takes 32-bit R half and 48-bit subkey:
 - expands R to 48-bits using perm E
 - adds to subkey using XOR
 - passes through 8 S-boxes to get 32-bit result
 - finally permutes using 32-bit perm P
DES Round Structure

- **S-boxes**
 - Have eight S-boxes which map 6 to 4 bits.
 - Each S-box is actually 4 little 4-bit boxes.
 - Outer bits 1 & 6 (row bits) select one row of 4.
 - Inner bits 2-5 (col bits) are substituted.
 - Result is 8 lots of 4 bits, or 32 bits.
 - Row selection depends on both data & key.
 - Feature known as autoclaving (autokeying).
 - Example:
 - $S(18 \ 09 \ 12 \ 3d \ 11 \ 17 \ 38 \ 39) = 5fd25e03$

Substitution Boxes S

- Have eight S-boxes which map 6 to 4 bits.
- Each S-box is actually 4 little 4-bit boxes.

 - Outer bits 1 & 6 (row bits) select one row of 4.
 - Inner bits 2-5 (col bits) are substituted.
 - Result is 8 lots of 4 bits, or 32 bits.

 - Row selection depends on both data & key.
 - Feature known as autoclaving (autokeying).

 - Example:
 - $S(18 \ 09 \ 12 \ 3d \ 11 \ 17 \ 38 \ 39) = 5fd25e03$
DES Key Schedule

- forms subkeys used in each round
 - initial permutation of the key (PC1) which selects 56-bits in two 28-bit halves
 - 16 stages consisting of:
 - rotating each half separately either 1 or 2 places depending on the **key rotation schedule** \(K \)
 - selecting 24-bits from each half & permuting them by PC2 for use in round function \(F \)

- note practical use issues in h/w vs. s/w

DES Decryption

- decrypt must unwind steps of data computation

- with Feistel design, do encryption steps again using subkeys in reverse order (SK16 ... SK1)
 - IP undoes final FP step of encryption
 - 1st round with SK16 undoes 16th encrypt round
 - ...
 - 16th round with SK1 undoes 1st encrypt round
 - then final FP undoes initial encryption IP
 - thus recovering original data value
Avalanche Effect

- key desirable property of encryption alg
- where a change of one input or key bit results in changing approx half output bits
- making attempts to “home-in” by guessing keys impossible
- DES exhibits strong avalanche

Strength of DES – Key Size

- 56-bit keys have $2^{56} = 7.2 \times 10^{16}$ values
- brute force search looks hard
- recent advances have shown is possible
 - in 1997 on Internet in a few months
 - in 1998 on dedicated h/w (EFF) in a few days
 - in 1999 above combined in 22hrs!
- still must be able to recognize plaintext
- must now consider alternatives to DES – later more on AES
Strength of DES – Analytic Attacks

- now have several analytic attacks on DES
- these utilise some deep structure of the cipher
 - by gathering information about encryptions
 - can eventually recover some/all of the sub-key bits
 - if necessary then exhaustively search for the rest
- generally these are statistical attacks
- include
 - differential cryptanalysis
 - linear cryptanalysis
 - related key attacks

Differential Cryptanalysis

- one of the most significant recent (public) advances in cryptanalysis
- known by NSA in 70's cf DES design
- Murphy, Biham & Shamir published in 90's
- powerful method to analyse block ciphers
- used to analyse most current block ciphers with varying degrees of success
- DES reasonably resistant to it, cf. Lucifer
Differential Cryptanalysis

- a statistical attack against Feistel ciphers
- uses cipher structure not previously used
- design of S-P networks has output of function f influenced by both input & key
- hence cannot trace values back through cipher without knowing value of the key
- differential cryptanalysis compares two related pairs of encryptions

Differential Cryptanalysis Compares Pairs of Encryptions

- with a known difference in the input
- searching for a known difference in output
- when same subkeys are used

\[
\Delta m_{i+1} = m_{i+1} \oplus m'_{i+1} \\
= [m_{i-1} \oplus f(m_i, K_i)] \oplus [m'_{i-1} \oplus f(m'_i, K_i)] \\
= \Delta m_{i-1} \oplus [f(m_i, K_i) \oplus f(m'_i, K_i)]
\]
Differential Cryptanalysis

- have some input difference giving some output difference with probability p

- if find instances of some higher probability input / output difference pairs occurring

- can infer subkey that was used in round

- then must iterate process over many rounds (with decreasing probabilities)
Differential Cryptanalysis

- perform attack by repeatedly encrypting plaintext pairs with known input XOR until obtain desired output XOR

- when found
 - if intermediate rounds match required XOR have a right pair
 - if not then have a wrong pair

- can then deduce keys values for the rounds
 - right pairs suggest same key bits
 - wrong pairs give random values

- for large numbers of rounds, probability is so low that more pairs are required than exist with 64-bit inputs

- Biham and Shamir have shown how a 13-round iterated characteristic can break the full 16-round DES

Linear Cryptanalysis

- another recent development

- also a statistical method

- must be iterated over rounds, with decreasing probabilities

- developed by Matsui et al in early 90's

- based on finding linear approximations

- can attack DES with 2^{43} known plaintexts, easier but still in practice infeasible
Linear Cryptanalysis

- find linear approximations with prob \(p \neq \frac{1}{2} \)
 \[P[i_1, i_2, \ldots, i_a] \oplus C[j_1, j_2, \ldots, j_b] = K[k_1, k_2, \ldots, k_c] \]
 where \(i_a, j_b, k_c \) are bit locations in \(P, C, K \)

- gives linear equation for key bits

- get one key bit using max likelihood alg

- using a large number of trial encryptions

- effectiveness given by: \(|p^{-1}/2| \)

DES Design Criteria

- as reported by Coppersmith in [COPP94]

- 7 criteria for S-boxes provide for
 - non-linearity
 - resistance to differential cryptanalysis
 - good confusion

- 3 criteria for permutation \(P \) provide for
 - increased diffusion
Block Cipher Design

- basic principles still like Feistel’s in 1970’s

- number of rounds
 - more is better, exhaustive search best attack

- function f:
 - provides “confusion”, is nonlinear, avalanche
 - have issues of how S-boxes are selected

- key schedule
 - complex subkey creation, key avalanche

How to use a block cipher

- Direct use of a block cipher is inadvisable
 - Enemy can build up „code book“ of plaintext/ciphertext equivalents
 - Only works for messages that are a multiple of the block size

- Solution: 5 standard modes of operation
 - Electronic Code Book (ECB)
 - Cipher Block Chaining (CBC)
 - Cipher Feedback (CFB)
 - Output Feedback (OFB)
 - Counter (CTR)
Codes vs. Ciphers

- Ciphers operate syntactically, on elements of an alphabet (letters) or groups of “letters”: A → D, B → C, etc.

- Codes operate semantically, on words, phrases, or sentences, e.g., per codebooks

Electronic Code Book

- Direct use of block cipher
- Used primarily to transmit encrypted keys
- Very weak for general-purpose encryption
- Problem: block substitution attack
Cipher Block Chaining (CBC)

- IV: Initialization vector, P: plaintext, C: ciphertext

Diagram:

- P1 encrypted with IV to get C1
- P2 encrypted with C1 to get C2
- P3 encrypted with C2 to get C3

Properties of CBC:

- Ciphertext of each encrypted block depends on the plaintext of all preceding blocks
- Subsets of blocks appear valid and will decrypt properly
- Message integrity has to be done otherwise

CBC and electronic voting

[Kohno, Stubblefield, Rubin, Wallach]

- Found in the source code for Diebold voting machines:
 - `DesCBCEncrypt((des_c_block*)tmp, (des_c_block*)record.m_Data, totalSize, DESKEY, NULL, DES_ENCRYPT)`
ECB vs. CBC

Similar plaintext blocks produce similar ciphertext blocks (not good!)

Information leakage in ECB mode

Encrypt in ECB mode
n-Bit Cipher Feedback

- Add n-bit shift and move Encrypt operation before X-OR operator
- Retains some of the previous cycle’s ciphertext
- Copes gracefully with deletion of n-bit unit (bit errors)

n-Bit Output Feedback

- No error propagation
- Active attacker can make controlled changes to plaintext
- OFB is a form of stream cipher
Counter mode

- Another form of stream cipher
- Counter often split in message and block number
- Active attack can make controlled changes to plaintext
- Highly parallelizable
- No linkage between stages
- Vital: Counter never to repeat

Which mode for what task

- General file or packet encryption: CBC
 ⇒ Input must be padded to $n \times$ cipher block size
- Risk of byte or bit deletion: CFB$_8$ or CFB$_1$
- Bit stream: noisy line and error propagation is undesirable: OFB
- Very high-speed data: CTR
- Needed in most situations: integrity checks
 - Actually needed almost always
 - Attack on integrity ⇒ attack on confidentiality
 - Solution: separate integrity check along with encryption
Stream ciphers

- **Operation:**
 - Key stream generator produces a sequence S of pseudo-random bytes
 - Key stream bytes are combined (usually via XOR) with plaintext bytes

- **Properties:**
 - Very good for asynchronous traffic
 - Best-known stream cipher RC4 (used, e.g., in SSL)
 - Key stream must never be reused for different plaintexts

RC4

- Extremely efficient
- After key setup, it just produces a key stream
- Internal state: 256-byte array plus two integers

For as many iterations as are needed, the RC4 modifies the state and outputs a byte of the keystream. In each iteration, it increments i, adds the value of S pointed to by i to j, exchanges the values of $S[i]$ and $S[j]$, and then outputs the value of S at the location $S[i] + S[j]$ (modulo 256). Each value of S is swapped at least once every 256 iterations.

- No resynchronization except via rekeying + starting over
- Note: known weaknesses if used other than as stream cipher
CPU speed vs. key size

- Adding one bit to the key doubles work for brute force attack
- Effect on encryption time is often negligible or even free
- It costs nothing to use a longer RC4 key
- Going from 128-bit AES to 256-bit AES takes (at most) 40% longer for en-/decryption but increases the attacker’s effort by a factor of 2^{128}
- Using triple DES costs $3 \times$ more to encrypt, but increases the attacker’s effort by a factor of 2^{112}
- Moore’s Law favors the defender!

Summary

- Have considered:
 - Block vs stream ciphers
 - Feistel cipher design & structure
 - DES
 - details
 - strength
 - Differential & Linear Cryptanalysis
 - Block cipher design principles