The Security Flag for the IPv4 Header

RFC3514

Typical problems

- Distinguishing packets hard for
 - Firewalls
 - Packet filters
 - Intrusion detection systems

- Why
 - Unusual pkts
 vs. pkts of malicious intent

- Solution
 - Security flag in the IPv4 header
Syntax

- Unused bits
 - High-order bit of IP fragment offset field

- Assignment
 - Not left to IANA

Syntax (cont.)

- Bit layout
 0
 +---
 | | | |
 +---

- Assigned values
 0x0 bit set to 0: no evil intent
 - Hosts, network elements, etc.
 SHOULD assume that the packet is harmless
 SHOULD NOT take defensive measures
 (already implemented by most OSs)
 0x1 bit set to 1: evil intent
 - Secure systems
 SHOULD try to defend themselves
 - Insecure systems
 MAY chose to crash, be penetrated, etc.
IANA consideration

- Document defines behavior of security elements of the 0x0 and 0x1 bit values.
- Behavior for other values of the bit MAY be defined only by IETF consensus [RFC2434].

Setting the security bit

- Attack applications
 - MAY use suitable API to request it be set
 - System requirements:
 - No other mechanisms for setting
 - MUST provide API; MUST be used by attack programs

- Multi-level insecure OS
 - Special level for attack programs
 - Bit MUST be set by default for pkts from this level
 - System MAY provide API to clear bit for non-malicious activity by users who normally engage in attack behavior
Setting the security bit (cont.)

- Fragments
 - If dangerous => MUST set bit
 - Pkt with bit fragmented
 => MUST clear bit in fragments
 => MUST set bit in reassembled pkt

- Intermediate systems
 - Used for laundering attack
 - Relayed pkts SHOULD have the bit set

- Hand-craft applications
 - Part of an attack => MUST set bit by themselves

Setting the security bit (cont.)

- Hosts inside firewalls
 - Axiom: no attackers inside => MUST NOT set bit

- NAT
 - Modify packets => SHOULD set evil bits

- Transparent proxies and email proxies
 - SHOULD set bit in reply to innocent clients

- Scans of hosts with Intrusion detection systems
 - Benign research
 => bit MUST NOT be set
 - Ultimate intent evil and destination IDS that alerts
 => bit SHOULD be set
Processing the security bit

- Firewalls, etc.
 - MUST drop all inbound packets with bit set
 - MUST NOT drop pkts with bit off
 - Dropped pkts SHOULD be accounted in MIB

- IDS
 - MUST apply probabilistic correction factor
 - Known propensity for false negatives/positives
 - Evil bit set => log attempt probabilistically
 - Evil bit clear => log attempt probabilistically
 - A suitable admin interface MUST be provided

- Routers
 - Not security devices => SHOULD NOT examine bit

- End-Hosts
 - System dependent
 - MUST react appropriately according to their nature
Related work

- Only IPv4 evil bit
- IPv6 two options
 - Hop-by-hop option
 - Pkts that damage the network, e.g. DDoS
 - End-to-end option
 - Pkts intended to damage destination hosts
 - Contains a 128-bit strength evilness indicator
- Link layer
 - Bypass routers and hence firewalls
 => link-layer scheme MUST denote evil. E.g.:
 - Evil lambdas
 - Evil polarizations

Security considerations

- Functioning of security mechanisms depends critically on evil bit set properly.
- Faulty components:
 - Inappropriately evil bit = 0
 => firewalls will not function properly.
 - Inappropriately evil bit = 1
 => denial of service condition