The Security Flag for the IPv4 Header

RFC3514
Typical problems

- Distinguishing packets hard for
 - Firewalls
 - Packet filters
 - Intrusion detection systems

- Why
 - Unusual pkts
 vs. pkts of malicious intent

- Solution
 - Security flag in the IPv4 header
Syntax

- Unused bits
 - High-order bit of IP fragment offset field
- Assignment
 - Not left to IANA
Syntax (cont.)

- Bit layout
 0
 +---+
 | E |
 +---+

- Assigned values
 0x0 bit set to 0: no evil intent
 - Hosts, network elements, etc.
 SHOULD assume that the packet is harmless
 SHOULD NOT take defensive measures
 (already implemented by most OSs)
 0x1 bit set to 1: evil intent
 - Secure systems
 SHOULD try to defend themselves
 - Insecure systems
 MAY chose to crash, be penetrated, etc.
IANA consideration

- Document defines behavior of security elements of the 0x0 and 0x1 bit values.
- Behavior for other values of the bit MAY be defined only by IETF consensus [RFC2434].
Setting the security bit

- **Attack applications**
 - *MAY* use suitable API to request it be set
 - System requirements:
 - No other mechanisms for setting
 - *MUST* provide API; *MUST* be used by attack programs

- **Multi-level insecure OS**
 - Special level for attack programs
 - Bit *MUST* be set by default for pkts from this level
 - System *MAY* provide API to clear bit for non-malicious activity by users who normally engage in attack behavior
Setting the security bit (cont.)

- **Fragments**
 - If dangerous => **MUST** set bit
 - Pkt with bit fragmented
 - => **MUST** clear bit in fragments
 - => **MUST** set bit in reassembled pkt

- **Intermediate systems**
 - Used for laundering attack
 - Relayed pkts **SHOULD** have the bit set

- **Hand-craft applications**
 - Part of an attack => **MUST** set bit by themselves
Setting the security bit (cont.)

- Hosts inside firewalls
 - Axiom: no attackers inside \(\Rightarrow\) **MUST NOT** set bit
- NAT
 - Modify packets \(\Rightarrow\) **SHOULD** set evil bits
- Transparent proxies and email proxies
 - **SHOULD** set bit in reply to innocent clients
- Scans of hosts with Intrusion detection systems
 - Benign research
 - \(\Rightarrow\) bit **MUST NOT** be set
 - Ultimate intent evil and destination IDS that alerts
 - \(\Rightarrow\) bit **SHOULD** be set
Processing the security bit

- **Firewalls, etc.**
 - **MUST** drop all inbound packets with bit set
 - **MUST NOT** drop pkts with bit off
 - Dropped pkts **SHOULD** be accounted in MIB

- **IDS**
 - **MUST** apply probabilistic correction factor
 - Known propensity for false negatives/positives
 - Evil bit set ➞ log attempt probabilistically
 - Evil bit clear ➞ log attempt probabilistically
 - A suitable admin interface **MUST** be provided
Processing the security bit

- **Routers**
 - Not security devices => SHOULD NOT examine bit

- **End-Hosts**
 - System dependent
 - MUST react appropriately according to their nature
Related work

- Only IPv4 evil bit
- IPv6 two options
 - Hop-by-hop option
 - Pkts that damage the network, e.g. DDoS
 - End-to-end option
 - Pkts intended to damage destination hosts
 - Contains a 128-bit strength evilness indicator
- Link layer
 - Bypass routers and hence firewalls
 => link-layer scheme MUST denote evil. E.g.:
 - Evil lambdas
 - Evil polarizations
Security considerations

- Functioning of security mechanisms depends critically on evil bit set properly.
- Faulty components:
 - Inappropriately evil bit = 0
 => firewalls will not function properly.
 - Inappropriately evil bit = 1
 => denial of service condition