Lab Course
“RouterLab”

OSPF - Open Shortest Path First
(RFC 2328)

Some of the slides come from: http://www.ietf.org/proceedings/07dec/slides/IDRTut-0.pdf
Miscellaneous

- Anything that needs discussion?
Internet Routing

- **Distance Vector**
 - I tell you all my “best” routes for all destinations that I know and you tell me yours.
 - Build simplified topology from local perspective
 - E.g. RIP

- **Link State**
 - I announce to everyone about my links and the addresses I originate on each link and listen to everyone’s announcement.
 - Build full topology
 - E.g. OSPF
OSPF (Link State)

- I tell everyone about all my connections (links), with link up/down announcements
- I tell everyone about the addresses I originate on each link
- I listen to everyone else’s link announcements
- I build a topology of every link (map)
- Then I compute the shortest path to every address
- I assume (trust) that everyone else has assembled the same map and performed the same path selection
OSPF (Link State)

- Is an instantiation of the Dijkstra Algorithm
 1. Set: $i = 0$, $S_0 = \{u_0 = s\}$, $L(u_0) = 0$, and $L(v) = \infty$, for $v \neq u_0$
 2. Compute: $\forall v \in (V \setminus S_i) \quad L(v) = \min\{L(v), L(u_i) + d_{u_i}^{u}\}$
 3. Select: $u_{i+1} = v' : L(v') = \min_{\forall v \in (V \setminus S_i)} \{L(v)\}$
 4. Update: $S_{i+1} = S_i \cup u_{i+1}, i = i + 1$
 5. If $i = |V| - 1$ stop, otherwise go to 2
OSPF

- Is more complex
 - (RFC 2328 is 244 pages, RIP is 39!)
- Converges extremely quickly
- Should be loop-free at all times
- Does not guarantee consistency of outcomes
- Relies on a “full disclosure” model across the whole domain
- Can be organized in several “areas”
- Still can’t scale
OSPF Components

- **Hello Protocol:**
 - Builds and maintains adjacencies

- **Link State Announcements**

- **Database Synchronization:**
 - Ensure consistency of the Database among neighbors
 - Reliable Flooding

- **Shortest-Path Tree Computation**
 - Based on the Routing Database
OSPF Packets

• OSPF runs directly over IP
 - Protocol Number: 89

• Packets’ Type
 1. Hello - Discover/Maintain neighbors
 2. Database Description - Summarize database contents
 3. Link State Request - Database download
 4. Link State Update - Database update
 5. Link State Ack - Flooding Acknowledgement
Hello Protocol

• **Task:**
 - Discover/Maintain neighbor relationship
 - Discover bi-directionality
 - Negotiate capabilities (HelloInterval, Netmask, RouterDeadInterval)

• **Method:**
 - Periodical multicasting of Hello Packets containing:
 ▶ List of routers whose Hello Packets have been seen recently

• **Target:**
 - Establish Adjacencies
 - Adjacent routers sync the link-state database
LSA - LS Announcements

- **Router-LSA**
 - Flooded
 - States of the links

- **Network-LSA**
 - Flooded by Designated Router
 - Routers use an ID (usually an IP address on the loopback)
 - Describes all routers attached to it

- The set of LSA form the Database
Database Sync

- Ideally all routers have to sync their Database
- In practice in OSPF only adjacent routers Sync their Database
- Types of Sync:
 - Initial Sync
 - when establishing adjacencies
 - Continuous Sync
 - when adjacencies are already established
Initial Database Sync

- Routers perform “Database Exchange Process”
 - State Machine
- Database Description Packets
 - Contains summaries of LS data
- DD are explicitly acknowledged
- More recent LS Data can be explicitly requested (Link State Request)
- Process ends with adjacency establishment
Sync Example

Down
ExStart
Exchange
Loading
Full

RT1
Hello -> DD
DD
LS-Request
LS-Update
Down

RT2
Hello
DD
LS-Request
LS-Update
Init
ExStart
Exchange
Full

OSPF
Continuous Database Sync

- Reliable Flooding
- LSA are generated
 - periodically if nothing changes (30 minutes)
 - upon specific events if they change the content of the LSA
- If a newer LSA is received by a router it is put in the database and a route computation is triggered
- The LSA is sent to all adjacencies which have to explicitly acknowledge it
Shortest-Path Tree

<table>
<thead>
<tr>
<th>Destination</th>
<th>Cost</th>
<th>Next-Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>0</td>
<td>*</td>
</tr>
<tr>
<td>R2</td>
<td>1</td>
<td>link</td>
</tr>
<tr>
<td>R3</td>
<td>2</td>
<td>link</td>
</tr>
<tr>
<td>R5</td>
<td>4</td>
<td>R3</td>
</tr>
<tr>
<td>R4</td>
<td>6</td>
<td>R2</td>
</tr>
<tr>
<td>R6</td>
<td>7</td>
<td>R3</td>
</tr>
</tbody>
</table>

1. Added Destination = <R1,0>; Candidate Destination List = <R2,1> <R3,2>
2. Added Destination = <R2,1>; Candidate Destination List = <R3,2> <R5,5> <R4,6>
3. Added Destination = <R3,2>; Candidate Destination List = <R5,4> <R4,6>
4. Added Destination = <R5,4>; Candidate Destination List = <R4,6> <R6,7>
5. Added Destination = <R4,6>; Candidate Destination List = <R6,7>
6. Added Destination = <R6,7>; Candidate Destination List =
7. Done!
Hierarchical OSPF

• Why?
 - Reduce routing overhead
 - Increase scalability
 - Speed up convergence
 - Confine routing instabilities in contained areas
Hierarchical OSPF

• How
 - Inside Areas full OSPF
 - Flooding is limited to Areas
 - Area Border Routers summarize information
 ➤ LSA-Summary
 - Area 0 (backbone mandatory)
 - Inter-area communication only through Area 0
 - No loops allowed among areas
 - Only 2 levels hierarchy allowed
Worksheet 4

- Use same VLANs topology like in Question 1 Work Sheet 2
- Target: logical networks communicate using OSPF
- Readings:
 - Cisco RIP
 - Juniper RIP
 - RFC 2328
New Schedule!

- Deadline Worksheet 4: 29th May 2009
- No debriefings/Tutorials in the week from 19th to 22nd May
- Debriefing Worksheet 3 (RIP) will be held on 27th May
- Tutorial on BGP will be held on Thursday 28th May
Any other Question?