Time-series and scaling analysis with R

Steve UHLIG
library(VGAM)

Generating Pareto distribution:
- `vector.pareto1 <- rpareto(n=100000, location=10, shape=1)`
- `vector.pareto1.5 <- rpareto(n=100000, location=10, shape=1.5)`
- `vector.pareto2 <- rpareto(n=100000, location=10, shape=2)`

Plot CCDF on a log-log scale:
- `ccdf <- function(myList, density=FALSE)
 {
 # generates the CCDF of a list or vector
 freqs = table(myList)
 X = rev(as.numeric(names(freqs)))
 Y = cumsum(rev(as.list(freqs)));
 data.frame(x=X, count=Y)
 }

 plot(ccdf(vector.pareto1), log="xy")`
Time-series aggregation

- library(tseries)

- Computing m-aggregated time series:
 - vector.ts <- ts(vector,frequency=m)
 - vector.m-agg <- aggregate(vector.ts,FUN=mean)

- Plot aggregated time series:
 - plot(vector.m-agg)

- Compare variances of aggregated time-series:
 - poisson decreases proportionately with m
 - heavy-tailed very slowly
Auto-correlation

- `library(stats)`
- Auto-correlation function: `acf()`
 - Poisson process is uncorrelated: 1 at lag 0, 0 otherwise
 - Pareto time-series is also uncorrelated: 1 at lag 0, 0 otherwise
 - Real traffic is correlated: `acf(vector, log="y")` shows slow decay
Wavelets

- library(waveslim)
- Performing wavelet analysis:
 - `vector.res <- dwt(vector[1:2**16],wf="d16",n.levels=10,boundary="periodic")`
 - Length of analyzed time-series (L) must be a power of 2
 - Several wavelet functions available (wf)
 - Number of levels to be analyzed: $2^n \leq L$
Wavelets

- Selecting wavelet coefficients at scale i
 - `vector.res$di`

- Computing log2 of their variance:
 - `log2(var((res.vector$di)))`

- Keeping energy of coefficients at each scale:
 - `coefvar <- mat.or.vec(9, 1)`
 - `coefvar[i] <- log2(var((res.vector$di)))`

- Plot the log of the energy of the wavelet coefficients
 - Poisson process shows no scaling
 - Real traffic does