Internet Security

Prof. Anja Feldmann, Ph.D.
anja@net.t-labs.tu-berlin.de
http://www.net.t-labs.tu-berlin.de/

Prof. Dr. Jean-Pierre Seifert
jpseifert@sec.t-labs.tu-berlin.de
http://www.sec.t-labs.tu-berlin.de/
General information

Area:
- Diplom (Informatik): BKS – Hauptstudium Vertiefer
- Master (Informatik): Kommunikationsbasierte Systeme
- Bachelor (Informatik): Kommunikationstechnik
- Master (techn. Informatik): Techn. Anwendungen
- Will be integrated into a Module system of SECT and INET

Time
- Wednesday: 10:00 – 12:00

Room
- TEL 1118/19

Language
- English (Questions can be asked in German!)

Web site
- http://www.net.t-labs.tu-berlin.de/teaching/ss09/is_ss09/
General information

- Mailing list
 - Via ISIS, see Web page

- Exam
 - For those that need it 😊
 - Oral or written exam after semester end
 (depends on # of participants)

- Prerequisite: some knowledge of
 - How the Internet works
 - How operating systems work
 - Little bit of undergraduate math for cryptography

- Additional contact persons:
 - Jan Böttger (INET) and Collin Mulliner (SECT)
What is this course about?

Network security? Not quite!

Focus:
- Security of networked applications
 - Security of Web browsers
- Protection of network infrastructure
 - Firewalls
 - Intrusion detection
Topics

- Basics of secure network protocol design
 - Using cryptography (not a cryptography class!)
 - The role of correct software

- Practical focus
 - This is not a pure academic-style course
 - You’ll see real security holes
 - A lot of (in)security is about doing the unexpected
 - „Think sideways“
How to think about insecurity

- Bad guys don’t follow rules
- Need to understand what sort of attacks are possible to compromise a system
 - Prerequisite to understand what to protect in a system!
- This is not the same as actually launching them!
 - Taking a security class is not an excuse for hacking
 - Hacking is any form of unauthorized access, including exceeding authorized permissions
 - The fact that a file or computer is not properly protected is no excuse for unauthorized access
Reading

- ... (see Web)

- Research papers (see Web)
Network security

Overview
Dichotomy: Hosts

- Is (or can be) well-controlled
- There are well-developed authentication and authorization models
- Strong notion
 - Of "privileged" state
 - What programs can use/do
Dichotomy: Networks

- None of the above
- Anyone can (and does) connect to the network
- Connectivity can only be controlled in very small, well-regulated environments, and maybe not even then
- Different OS have different – or no – notions of userIDs and privileges

=> notions of privilege is missing
Networking

- Networks interconnect
- Networks always interconnect
- Interconnections happen everywhere 😊 but mainly at the edges
Failures

☑ Benign failures
 ❖ Most network failures are benign
 ❖ The Internet allow for such failures
 • Data corruption
 • Timeouts
 • Dead hosts
 • Routing problems
 • ...

☒ Rule of thumb:
 ❖ Anything that can happen by accident can happen malicious
 -> much more dangerous!
Failures and Faults

Diagram showing a classification of faults based on various dimensions such as Phase of creation or occurrence, System boundaries, Phenomenological cause, Dimension, Objective, Intent, Capability, and Persistence. The diagram also includes examples of faults such as Software Flaws, Logic Bombs, Hardware Errors, Production Defects, Physical Deterioration, Physical Interference, Intrusion Attempts, Viruses, and Worms.
Principle: Trust nothing

- A host can/should trust nothing that comes over the wire!
- Any desired protections have to be explicitly supplied
- There may be help from lower layers that supply protection
 - Yet those layers have to be based on the same principle!
 - Research on such lower layer protection is a very hot topic and far from being solved!
Attitude question

- Unproductive attitudes
 - “Why would anyone ever do that?”
 - “That attack is too complicated”
 - “No one knows how this system works, so they can’t attack it”

- Better attitudes
 - “Programming Satan’s Computer” (Ross Anderson)
 - “Assume that serial number 1 of any device is delivered to the enemy”
 - “You hand your packets to the enemy to deliver; you receive all incoming packets from the enemy”
Network security tools

- Cryptography
- Network-based access control (firewalls and more)
- Monitoring

- Protocol analysis by formal verification

- Paranoid design!
Protocol design

- Heavy use of crypto and authentication
- Ensure that sensitive fields are protected
- Make authentication bilateral
- Figure out the proper authorization
- Defend against
 - Eavesdropping
 - Modification
 - Deletion
 - Replay
 - And combinations thereof
Buggy software

- Most network security holes are due to buggy code
- A buggy network-connected program is an insecure one 😞
- Correct coding counts for a lot!
Course overview

- Introduction
 - Attacks and threats, cryptography overview
 - Authentication (Kerberos, SSL)

- Applications
 - Web, browser, email, ssh

- Lower layer network security
 - NAT, (IPsec), firewalls

- Monitoring / information gathering
 - Intrusion detection, network scans

- Availability
 - Worms, denial of service, network infrastructure