Botnets

Why to talk about Botnets ...

- Botnet could be a most powerful supercomputer in the world [1].
- Recent attack on Estonia.
- Vehicle for cyber-terrorism and cyber crime.
- Very serious security threat that could stop your national IT infrastructure.

=> So we do need to understand botnet
Botnets

- Botnet = network of autonomous programs capable of acting on instructions
 - Typically a large (up to several hundred thousand) group of remotely controlled “zombie” systems
 - Machine owners are not aware they have been compromised
 - Controlled and upgraded via IRC/P2P/HTTP/...
- Used as the platform for various attacks
 - Distributed denial of service
 - Spam and click fraud
 - Launching pad for new exploits/worms

Building a Botnet

- Attacker
 - Win XP compromised
 - FreeBSD
 - Mac OS X
 - Win XP compromised

- Install bot software
- Compromise attempt
Botnet construction

- First stage, exploit vulnerabilities (operating system's/browser's)
 - Next stage to download bot software, C&C instructions
 - Once the bot software is executed and connected to C&C server
- Bots connect to channel of C&C (IRC or HTTP) password protected channel
- Encryption layer between bot and C&C

IRC Botnet
Joining the IRC Channel

Win XP

```
/connect jade.va.us.dal.net
/join #hacker
```

Win XP

```
/connect jade.va.us.dal.net
/join #hacker
```

Win XP

```
/connect jade.va.us.dal.net
/join #hacker
```

Command and Control

(12:59:27pm) -- A9-pcgbdv (A9-pcgbdv@140.134.36.124) has joined (#owned) Users : 1646

(12:59:27pm) (@Attacker) .ddos.synflood 216.209.82.62

(12:59:27pm) -- A6-bpxufrd (A6-bpxufrd@wp95-81.introweb.nl) has joined (#owned) Users : 1647

(12:59:27pm) -- A9-nzmpah (A9-nzmpah@140.122.200.221) has left IRC (Connection reset by peer)

(12:59:28pm) (@Attacker) .scan.enable DCOM

(12:59:28pm) -- A9-tzrkeasv (A9-tzrkeasv@220.89.66.93) has joined (#owned) Users : 1650
HTTP Botnet

FastFlux network botnet
Botnet Propagation

- Each bot can scan IP space for new victims
 - Automatically
 - Each bot contains hard-coded list of IRC servers’ DNS names
 - As infection is spreading, IRC servers and channels that the new bots are looking for are often no longer reachable
 - On-command: target specific /8 or /16 prefixes
 - Botmasters share information about prefixes to avoid
- Evidence of botnet-on-botnet warfare
 - DoS server by multiple IRC connections (“cloning”)
- Active botnet management
 - Detect non-responding bots, identify “superbots”

Denial of Service (DoS) Redux

- Goal: Overwhelm victim machine and deny service to its legitimate clients
- DoS often exploits networking protocols
 - Smurf: ICMP echo request to broadcast address with spoofed victim’s address as source
 - Ping of death: ICMP packets with payloads greater than 64K crash older versions of Windows
 - SYN flood: “open TCP connection” request from a spoofed address
 - UDP flood: exhaust bandwidth by sending thousands of bogus UDP packets
Distributed Denial of Service (DDoS)

- Build a botnet of zombies
 - Multi-layer architecture: use some of the zombies as “masters” to control other zombies
- Command zombies to stage a coordinated attack on the victim
 - Does not require spoofing (why?)
 - Even in case of SYN flood, SYN cookies don’t help (why?)
- Overwhelm victim with traffic arriving from thousands of different sources

DDoS Architecture
DDoS Tools: Trin00

- Scan for known buffer overflows in Linux & Solaris
 - Unpatched versions of wu-ftpd, statd, amd, ...
 - Root shell on compromised host returns confirmation
- Install attack daemon using remote shell access
- Send commands (victim IP, attack parameters), using plaintext passwords for authentication
 - Attacker to master: TCP, master to zombie: UDP
 - To avoid detection, daemon issues warning if someone connects when master is already authenticated
- August of 1999: A network of 227 Trin00 zombies took U. of Minnesota offline for 3 days

DDoS Tools: Tribal Flood Network

- Supports multiple DoS attack types
 - Smurf; ICMP, SYN, UDP floods
- Attacker runs masters directly via root backdoor; masters talk to zombies using ICMP echo reply
 - No authentication of master’s commands, but commands are encoded as 16-bit binary numbers inside ICMP packets to prevent accidental triggering
 - Vulnerable to connection hijacking and RST sniping
- List of zombie daemons’ IP addresses is encrypted in later versions of TFN master scripts
 - Protects identities of zombies if master is discovered
DDoS Tools: Stacheldraht

- Combines “best” features of Trin00 and TFN
 - Multiple attack types (like TFN)
- Symmetric encryption for attacker-master connections
- Master daemons can be upgraded on demand
- February 2000: crippled Yahoo, eBay, Amazon, Schwab, E*Trade, CNN, Buy.com, ZDNet
 - Smurf-like attack on Yahoo consumed more than a Gigabit/sec of bandwidth
 - Sources of attack still unknown

Spam
Email in the Early 1980s

- Mail relay: forwards mail to next hop
- Sender path includes path through relays

Email Spoofing

- Mail is sent via SMTP protocol
 - No built-in authentication
- MAIL FROM field is set by the sender
 - Classic example of improper input validation
- Recipient’s mail server only sees IP address of the direct peer from whom it received the msg
Open Relays

- SMTP relay forwards mail to destination
 1. Bulk email tool connects via SMTP (port 25)
 2. Sends list of recipients via RCPT TO command
 3. Sends email body (once for all recipients!)
 4. Relay delivers message
- Honest relay adds correct Received: header revealing source IP
- Hacked relay does not

A Closer Look at Spam

```
Received: by 10.78.68.6 with SMTP id q6cs394373hua;
Mon, 12 Feb 2007 06:43:30 -0800 (PST)
Received: by 10.90.113.18 with SMTP id l18mr1730716agc.1171291410432;
43:30 -0800 (PST)
Return-Path: <wvnlwee@aviva.ro>
Received: from onelinkpr.net ([203.169.49.172])
by google.com with ESMTP id 30si11317474agc.2007.02.12.06.43.18;
Mon, 12 Feb 2007 06:43:30 -0800 (PST)
Received-SPF: neutral (google.com:
203.169.49.172 is neither permitted nor
denied by best guess record for domain of wvnlwee@aviva.ro)
Message-ID: <20050057765.stank.203.169.49.172@ASAFTU>
From: "Barclay Morales" <wvnlwee@aviva.ro>
To: <raykwatts@gmail.com>
Subject: You can order both Viagra and Cialis.
```
Why Hide Sources of Spam?

- Many email providers blacklist servers and ISPs that generate a lot of spam
 - Use info from spamhaus.org, spamcop.net
- Real-time blackhole lists stop 15–25% of spam at SMTP connection time
 - Over 90% after message body URI checks
- Spammers’ objective: evade blacklists
 - Botnets come very handy!

Open HTTP Proxies

- Web cache (HTTP/HTTPS proxy), e.g., squid

 ![Diagram](URL: HTTPS://xyz.com)

 Why is port 25 enabled, anyway?

- To spam: CONNECT <Victim’s IP> 25, then issue SMTP Commands
 - Squid becomes a mail relay
Send-Safe Spam Tool

Open Relays vs. Open Proxies

- Open proxy
 - Spammer must send message to each recipient through the proxy

- Open relay
 - Takes a list of addresses and sends to all
 - Can host an open relay on a zombie

- Listing services for open proxies and relays
 - http://www.multiproxy.org/
 - http://www.stayinvisible.com/
 - http://www.openproxies.com/ ($20/month)
Bobax Worm

- Infects machines with high bandwidth
 - Exploits MS LSASS.exe buffer overflow vulnerability
- Slow spreading (and thus hard to detect)
 - On manual command from operator, randomly scans for vulnerable machines
- Installs hacked open relay on infected zombie
 - Once spam zombie added to blacklist, spread to another machine
 - Interesting detection technique: look for botmaster’s DNS queries (trying to determine who is blacklisted)

Distribution of Spam Sources

[Ramachandran, Feamster]
IP Blacklisting Not Enough

[Ramachandran, Feamster]

More than half of client IPs appear less than twice

Distribution Across Domains

[Ramachandran, Feamster]
Most Bots Send Little Spam

[Ramachandran, Feamster]

Where Does Spam Come From?

[Ramachandran, Feamster]

- IP addresses of spam sources are widely distributed across the Internet
 - In tracking experiments, most IP addresses appear once or twice; 60–80% not reachable by traceroute
- Vast majority of spam originates from a small fraction of IP address space
 - Same fraction that most legitimate email comes from
- Spammers exploit routing infrastructure
 - Create short-lived connection to mail relay, then disappear
 - Hijack a large chunk of unallocated “dark” space
Spambot Behavior

- Strong correlation with Bobax infections
- Most are active for a very short time
 - 65% of Bobax victims send spam once; 3 out of 4 are active for less than 2 minutes
- 99% of bots send fewer than 100 messages regardless of their lifetime
- 95% of bots already in one or more blacklists
 - Cooperative detection works, but ...
 - Problem: False positives!
 - Problem: Short-lived hijacks of dark address space

Detecting Botnets

- Today’s bots are controlled via IRC and DNS
 - IRC used to issue commands to zombies
 - DNS used by zombies to find the master, and by the master to find if a zombie has been blacklisted
- IRC/DNS activity is very visible in the network
 - Look for hosts performing scans, and for IRC channels with a high percentage of such hosts
 - Used with success at Portland State University
 - Look for hosts who ask many DNS queries, but receive few queries about themselves
- Easily evaded by using encryption and P2P 😞
Bot Usage

- DDoS attacks
- ID theft
- Phishing
- Spamming
- Privacy Issues – installing keylogger, spywares
- Renting web proxies for illegal purposes
- ... many more

In short — “TO EARN MONEY”

Bot Economics

![DDoS service advertisement](image)
Bot Economics (2.)

- A paper from VB conference 2006 by Lovet
- A credit card business
 - Buying 40 valid CC – $200
 - Hiring 10 drops to collect purchased things – $800 ($20 per package)
 - Drops to cyber criminal delivery – $800
 - Selling on eBay – $17,800 (like Laptop, mobiles, clothes)
- Total cost, monthly – $1800
- Total profit – $17,800
- Net profit – $16,000
- Productivity index (Profit/Costs): 8.9

Protecting against Botnets

- For individual users:
 - Use updated OS and legal softwares
 - Anti virus software
 - Firewall
 - Don’t open Spam e-mails
 - Check your logs
- For Corporate networks:
 - Use strict firewall rules
 - Deploy honeypots and set-up DNS redirection to to it
 - Sniff outbound connection by using keywords used by bot herders