
1

Intrusion Detection Systems

2

Intrusion Detection Systems (IDS)

Examples of IDSs in real life
❒  Car alarms
❒  Fire detectors
❒  House alarms
❒  Surveillance systems

An IDS is any combination of hardware & software that
monitors a system or network for malicious activity.

An IPS (Intrusion Prevention System) is a network IDS that
can cap network connections.

3

What should be detected?

❒ Attempted and successful break-ins
❒ Attacks by legitimate users

❍ For example, illegitimate use of root privileges
❍ Unauthorized access to resources and data

❒ Trojan horses
❒ Viruses and worms
❒ Denial of service attacks

4

Where are IDS deployed?

❒ Host-based
❍ Monitors host activity
❍ Advantage: visibility of individual applications on host
❍ Disadvantage: attackable from host

❒ Network-based (NIDS)
❍ Often placed on a router or firewall
❍ Monitor traffic == examine pkt headers/payloads
❍ Advantages:

•  Single NIDS for many hosts
• Can look for global patterns

❍ Disadvantage: Has to reverse engineer app. behavior

5

Intrusion detection techniques

❒ Misuse detection
❍ Use attack “signatures” (need a model of attack)

•  Sequences of system calls, patterns of network traffic, etc.

❍ Must know what attacker will do (how?)
❍ Can only detect known attacks

❒ Anomaly detection
❍ Tries to detect deviations and abnormalities based on a

model of normal system behavior
❍ Can detect unknown attacks
❍ Abnormal behavior not necessarily attack

❒ Most IDS use a mix of both, although misuse
detection dominates

6

Possible IDS deployments

Web
server

FTP
server

DNS
server

application
gateway

Internet

Demilitarized zone

Internal
network

firewall

= IDS sensor

Underlying OS needs
to be hardened:
stripped of unnecessary
network services

7

Misuse vs. anomaly
❒  Password file modified Misuse

❒  Four failed login attempts Anomaly/Misuse

❒  Failed connection attempts on
50 sequential ports

Anomaly/Misuse

❒  User who usually logs in around
10am from Berlin dorm logs in at
4:30am from a Russian IP address

Anomaly

❒  UDP packet to port 1434 Misuse

❒  “DEBUG” in body of a SMTP message Most likely:
not an attack!

8

Misuse detection (signature-based)

❒ Rules that define a behavioral signature
associated with certain attacks
❍ Example: buffer overflow

•  Setuid program spawns shell with certain arguments
•  Packet with lots of NOPs
• Very long argument to string function

❍ Example: SYN flooding (Denial of Service)
•  Large number of SYN packets without ACKs coming back

❒ Attack signatures disadvantage:
❍ Very specific
❍ May miss variants of known attacks
❍ Hard for unknown attacks

9

Extracting misuse signatures

❒ Use invariant characteristics of known attacks
❍ Bodies of known viruses and worms
❍ Port numbers of apps with known buffer overflows
❍ Return addresses of overflow exploits
❍ Hard to handle mutations

•  Polymorphic viruses: each copy has different body

❒ Disadvantages (research challenges):
❍ No knowledge of intention of activity
❍ Large signature sets (=> performance issues)
❍ Fast, automatic extraction of new attack signatures
❍ Honeypots: Easy targets to attract malicious activity

• Useful for signature extraction

10

Anomaly detection

❒ Based on deviation from normal behavior
❒ Define profile of “normal” behavior

❍ Good for “small”, well-defined systems
(single program vs. multi-user OS)

❒ IDS flags deviations from the “normal” profile
 Abnormal behavior might or might not be attack

❒ Profile can be statistical
❍ Build manually (hard)
❍ Use machine learning/data mining techniques

•  Log activities for some time
•  “train” IDS to differentiate normal and abnormal patterns
•  Risk: attacker trains IDS to accept his activity as normal

e.g., low-volume port scan may train IDS to accept port scans

11

What is a “profile?”

❒ Login/session activity
❍ Frequency; last login; password failures; elapsed time;

session output, CPU, I/O

❒ Command/program execution
❍ Frequency; program CPU, I/O, other resources (watch

for exhaustion); denied executions

❒ File access activity
❍ Read/write/create/delete frequency; failed reads,

writes, creates, deletes; resource exhaustion

❒ How can that be done in a scalable manner?

12

Efficiency of IDS systems

❒ Accuracy:
❍ Proper detection of attacks
❍ Absence of false alarms
❍ Trade-off between those two goals

❒ Performance: Processing traffic and audit events
❍ Not all IDS are able to handle traffic at Gigabit rates
❍ Solution: Use multiple NIDSs; use clusters of NIDSs

❒ Fault tolerance: Resistance to attacks
❍ Should run on dedicated hardened hosts

❒ Timeliness: Time elapsed between intrusion and
detection

13

Accuracy: Intrusion detection errors

❒ False negatives:
Attack is not detected
❍ E.g., signature-based misuse detection

❒ False positives: Harmless behavior classified as
attack
❍ E.g., statistical anomaly detection

❒ Both types of IDS suffer from both error types

❒ Which is the bigger problem?
❍ Attacks are fairly rare events
❍ IDS often suffer from base-rate fallacy

14

Base-rate fallacy

❒ 1% of traffic is SYN floods; IDS accuracy is 90%
❍ SYN flood classified as attack: prob. 90%
❍ Benign connection classified as attack: prob. 10%

❒ Probability conn. flagged as SYN flood is benign?

Pr(benign | alarm) = ?

15

❒ Suppose events A and B occur with probability Pr
(A) and Pr(B)

❒ Let Pr(AB) be probability that both A and B occur
❒ Conditional probability that A occurs assuming B

has occurred?

Conditional probability

 Pr(AB)
Pr(A | B) =

 Pr(B)

16

❒ Mutually exclusive events E1, … ,En
❒ Probability of any event A is

 Pr(A) = Σ1≤i≤n Pr(A | Ei) • Pr(Ei)
•  Intuition: whenever A occurs,

 some event Ei must have occurred

 =>

Bayes’ theorem

 Pr(A | Ei) • Pr(Ei)
Pr(Ei | A) =
 Pr(A)

17

Base-rate fallacy

❒ 1% (=Pr(SYN flood) = 1-Pr(benign)) of traffic is
SYN floods; IDS accuracy is 90%
❍ SYN flood classified as attack: prob. 90% = Pr(SYN flood)
❍ Benign connection classified as attack: prob. 10%

❒ Probability conn. flagged as SYN flood is benign?

 Pr(alarm | benign) • Pr(benign)
Pr(benign | alarm) =
 Pr(alarm)

 Pr(alarm | benign) • Pr(benign)
=
 Pr(alarm | benign) • Pr(benign) + Pr(alarm | SYN flood) • Pr(SYN flood)

 0.10 • 0.99
=
 0.10 • 0.99 + 0.90 • 0.01

=> 92% chance of false alarm!!!

18

Host-based IDS
❒  Monitor attacks on OSs,

applications.
❒  Has access to audit logs,

error messages, any
resources that can be
monitored on host
❍  OS system calls
❍  Command lines
❍  Network data
❍  Processes
❍  Keystrokes
❍  File and device accesses
❍  Registry in Windows

Advantages
❒  Tuned for system/OS/apps
❒  High detection accuracy

Disadvantages
❒  Only covers one host
❒  IDS on every critical host
❒  Need versions for each OS
❒  Can be disabled by

viruses, worms, …

19

❒ Passively inspect network traffic
❍ Watches for protocol violations
❍ Unusual connection patterns
❍ Attack strings in packet payloads
❍ Etc.

❒ If we actively change traffic  Intrusion
Prevention System

❒ Disadvantage:
❍ Limited possibilities for encrypted traffic (IPSec, VPNs)
❍ Not all attacks via the network
❍ Large amount of traffic

Network-Based IDS

20

Example: Port scan detection

❒ Many vulnerabilities are OS specific
❍ Bugs in specific implementations
❍ Oversights in default configuration

❒ Port scan often prelude to attack
❍ Attacker tries many ports and/or many IP addresses

•  Looking for old versions of daemons with unpatched buffer
overflows

❍ Then mount attack
• Example: SGI IRIX responds on TCPMUX port (TCP port 1)
•  If response detected use IRIX vulnerabilities to break in

21

Example: Port scan detection (2.)

❒ Scan suppression: Block traffic from addresses
that have too many failed connection attempts
❍ Requires network filtering, state maintenance
❍ Susceptible to slow scans

❒ False positives possible, e.g.:
❍ Web proxies
❍ P2P hosts
❍ Other innocent hosts due to stale IP caches, i.e.,

got an IP address that was previously used by P2P host

22

Popular open-source NIDS

❒ Snort (widely deployed (unfortunately))
❍ Large rule sets for known vulnerabilities, e.g.:

•  2007-03-22: Microsoft Windows Server Service Controller is
prone to a buffer overflow vulnerability that may allow an
attacker to take complete control of the target host.

•  2007-03-08: The HP Mercury LoadRunner agent suffers from a
programming error that may allow a remote attacker to cause
a stack-based buffer overflow condition to occur.

❒ Bro (from Vern Paxson at ICSI)
❍ Separates data collection and security decisions

• Event Engine distills packet stream into higher-level events
•  Policy Script Interpreter uses a script defining network’s

security policy to decide response

23

Snort

❒ Popular open source IDS
❍ 200,000 installations

❒ Enhanced sniffer
❍ Runs on Linux, Unix, Windows
❍ Generic sniffing interface libpcap

❒ Signatures
❍ Largest collection of signatures

for NIDS
❍ Written and released by Snort

community within hours
❍ Anyone can create one
❍ Signature often undocumented

and/or poor quality

Typical setup

snort
sensor

hub

internal
network

firewall

Good book: Intrusion Detection
with Snort, by Jack Koziol

24

Bro: a flexible NIDS

❒ Facts
❍ Open source
❍ Developed since 1995 by Vern Paxson
❍ Used in many research environments, e.g.,

UCB, LBL, TUM, The Grid, NERSC, ESnet, NCSA
❍ Supports anomaly as well as misuse detection

❒ Design goals
❍ Reliable detection of attacks
❍ High-performance
❍ Separation of base functionality from site specific

security policy
❍ Robust against attacks on itself

25

Bro features
❒  Full TCP stream reassembly
❒  Stateful protocol analysis
❒  Can import (some) SNORT signature rulesets
❒  Dynamic Protocol Detection
❒  BinPAC – a network protocol description language
❒  Very flexible policy scripting language (called Bro as well)

❍  Specialized for traffic analysis
❍  Strongly typed for robustness (conn_id, addr, port, time, …)
❍  Can trigger alarms and/or program execution
❍  Supports dynamic timeouts

❒  Clustering support for analysis of multi Gbps links
❒  Cooperates with Network Time Machine

26

❒  Passive link tap copies all traffic Network

Inside Bro

27

❒  Kernel filters high-volume stream

Network

libpcap

Packet Stream"

Filtered Packet!
Stream"

Tcpdump!
Filter"

Inside Bro

28

❒  “Event engine” produces
 policy-neutral events, e.g.:
❍  Connection-level:

•  connection attempt
•  connection finished

❍  Application-level:
•  ftp request
•  http_reply

❍  Activity-level:
•  login success Network

libpcap

Event Engine

Packet Stream"

Filtered Packet!
Stream"

Tcpdump!
Filter"

Event!
Stream"

Event!
Control"

Inside Bro

29

❒  “Policy script” incorporates:
❍  Context from past events
❍  Site’s particular policies

❒ … and takes action:
❍  Records to disk
❍  Generates alerts
❍  Executes programs as response

Network

libpcap

Event Engine

Policy Script Interpreter

Packet Stream"

Filtered Packet!
Stream"

Tcpdump!
Filter"

Event!
Stream"

Event!
Control"

Real-time Notification!
Record To Disk"

Policy!
Script"

Inside Bro

30

Bro’s protocol analyzers

❒ Full analysis
❍ HTTP, FTP, telnet, rlogin, rsh, RPC, DCE/RPC, DNS,

Windows Domain Service, SMTP, IRC, POP3, NTP, ARP,
ICMP, Finger, Ident, Gnutella, BitTorrent, NNTP

❒ Partial analysis
❍ NFS, SMB, NCP, SSH, SSL, IPv6, TFTP, AIM, Skype

❒ In progress
❍ BGP, DHCP, Windows RPC, SMB, NetBIOS, NCP, …

❒ Data sources
❍ DAG, libpcap, NetFlow

31

Protect your NIDS

Sourcefire Snort Remote Buffer Overflow
❒ Notification Type: IBM Internet Security Systems

Protection Advisory
❒ Notification Date: Feb 19, 2007
❒ Description: Snort IDS and Sourcefire Intrusion

Sensor IDS/IPS are vulnerable to stack-based
buffer overflow, which can result in remote code
execution.

 … patched since then

32

Attacking and evading NIDS

❒ Looking for patterns / signatures seems pretty
easy and straightforward

❒ But

33

Attacking and evading NIDS

❒ Attackers do not want to be detected by IDS
❍ Often attackers are intimately familiar with popular IDS

products, including their weaknesses

❒ Ideas:
❍ Overload NIDS then attempt the intrusion

• E.g., huge workload, packets requiring detailed analysis,
massive SYN floods

❍ Manipulate attack data
• Use encryption to hide packet contents
• Use data fragmentation (either physical or logical)

34

NIDS evasion: Fragmentation

❒ Send flood of fragments
❍ May saturate NIDS
❍ Once saturated, NIDS unable to detect new attacks

❒ Fragment packets in unexpected ways (possibly
violating RFCs)
❍ NIDS may not understand how to properly reassemble

attack packets
❍ Network stacks are resilient => will try and often

succeed
❍ Network stack may reassemble fragments differently

(OS dependent) => state explosion

35

Example: Fragment overlap attack

❒ Attacker uses two fragments for every attack
datagram
❍ First fragment: TCP header, incl. port number of

innocuous service not monitored by NIDS
❍ Second fragment: offset value overlaps with original

and includes a different port number

❒ IDS might let both fragments pass:
❍ First fragment to innocuous port
❍ Second fragment part of same “good datagram”

❒ Once the two fragments arrive at target host:
❍ IP reassembles datagram, possibly overwriting TCP

header with port in fragment 2
❍ Malicious segment delivered to monitored port!

36

❒ Want to detect “USER root” in packet stream
❒ Scanning every packet is not sufficient

❍ Attacker can split attack string into several packets;
defeats stateless NIDS

❒ Recording previous packet is not sufficient
❍ Send packets out of order

❒ Full reassembly of TCP state is not sufficient
❍ Attacker can use TCP tricks, e.g.:

• Certain packets seen by NIDS but dropped at receiver
• Manipulate checksums, TTL (time-to-live), fragmentation
•  Segment reassembly differs by OS

❍ Use of application layer protocol polymorphism

Example: Payload ambiguity

37

NIDS evation:

Insertion attack

NIDS

S R t

Insert packet with
bogus checksum

EU S R r o o t

Dropped

TTL attack

NIDS

S R

t

EU S R r

o o t

10 hops 8 hops

TTL=20

TTL=12

Short TTL to ensure
this packet doesn’t
reach destination

TTL=20
Dropped (TTL

expired)

38

❒ Just flag everything that's weird
❍ E.g., Overlapping fragments

❒ Golden rule of protocol implementation: “be strict
in what you send but liberal in what you accept”
❍ Advantage: the Internet works
❍ Impact: Lots of crud seen in every network:

• Violation of RFCs but it still works

❍ Problem for IDS, since it cannot flag weird stuff

❒ Different OSes, browsers, implementations
handle crud differently
❍ Impossible for the IDS to know how exactly a receiver

is going to react

Solving evasion: Easy?

39

Developing an IDS:
Intrusion detection problems
❒ Lack of training data with real attacks

❍ But lots of “normal” network traffic, system call data
❍ "Ground truth"

❒ Data drift
❍ Statistical methods detect changes in behavior
❍ Attacker can attack gradually and incrementally

❒ Main characteristics not well understood
❍ By many measures, attack may be within bounds of

“normal” range of activities

❒ False identifications are very costly
❍ Sysadmin will spend many hours examining evidence

