An Experimental Study of

Delayed Internet Routing Convergence

ACM SIGCOMM 2000 Stockholm Aug 31, 2000

Craig Labovitz
Microsoft Research
labovit@microsoft.com

Abha Ahuja, Farnam Jahanian, Abhijit Bose University of Michigan {ahuja, farnam, abose}@umich.edu

Motivation

(Why we should care about convergence)

- Routing reliability/fault-tolerance on small time scales (minutes) not previously a priority
- Emerging transaction oriented and interactive applications (e.g. Internet Telephony) will require higher levels of end2end network reliability
- How well does the Internet routing infrastructure tolerate faults?

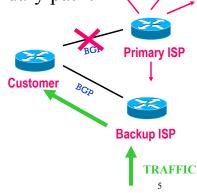
Conventional Routing Wisdom

(IETF, IAB, ISPs, etc)

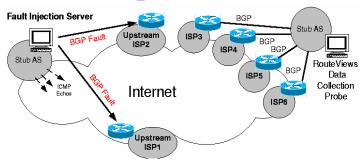
- Internet routing is robust under faults
 - Supports path re-routing and restoral on the order of seconds
- BGP has good convergence properties
 - Does not exhibit looping/bouncing problems of RIP
- Internet fail-over will improve with faster routers and faster links
- More redundant connections (multi-homing) to Internet will always improve site fault-tolerance

3

In This Talk


We will show that most of the conventional wisdom about routing convergence is not accurate...

- Measurement of BGP convergence in the Internet
- Analysis/intuition behind delayed BGP routing convergence
- Modifications to BGP implementations which would improve convergence times


Open Question

After a fault in a path to multi-homed site, how long does it take for the majority of Internet routers to fail-over to the secondary path?

- Routing table convergence (backbone routers reach steadystate) after a fault
- End-to-end paths stable ("normal" levels of loss and latency)

Experiments

- Inject BGP faults (announcements/withdraws) of varied prefix and ASPath lengths into topologically and geographically diverse ISP peering sessions
- Monitor impact faults through 1) recordings of default-free BGP peering sessions with 20 tier1/tier2 ISPs and 2) active ICMP measurements (512 byte/second to 100 random web sites)
- Wait two years (and 250,000 faults)

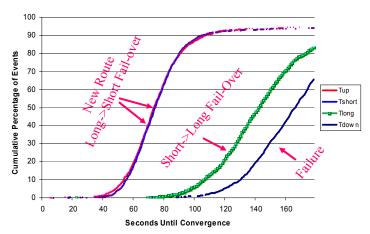
Fault Scenarios

- Tup -- A new route is advertised
- Tdown -- A route is withdrawn (i.e. single-homed failure)
- Tshort -- Advertise a shorter/better ASPath (i.e. primary path repaired)
- Tlong -- Advertise a longer/worse ASPath (i.e.primary path fails)

7

Major Convergence Results

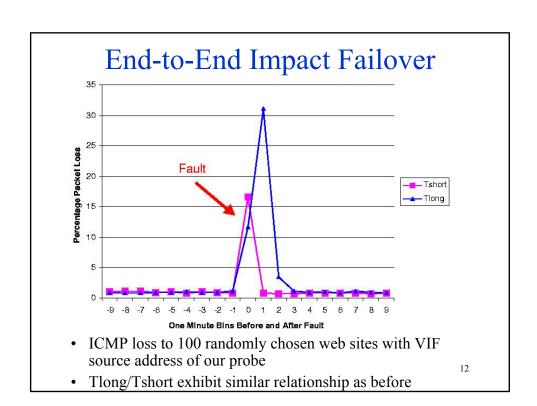
- Routing convergence requires an order of magnitude longer than expected (10s of minutes)
- Routes converge more quickly following Tup/Repair than Tdown/Failure events ("bad news travels more slowly")
- Curiously, withdrawals (Tdown) generate several times the number of announcements than announcements (Tup)


Example of BGP Convergence

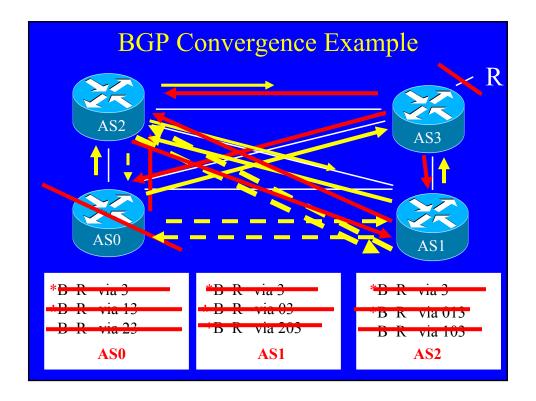
TIME BGP Message/Event 10:40:30 Route Fails/Withdrawn by AS2129 10:41:08 2117 announce 5696 2129 10:41:32 2117 announce 1 5696 2129 10:41:50 2117 announce 2041 3508 3508 4540 7037 1239 5696 2129 10:42:17 2117 announce 1 2041 3508 3508 4540 7037 1239 5696 2129 10:43:05 2117 announce 2041 3508 3508 4540 7037 1239 6113 5696 2129 10:43:35 2117 announce 1 2041 3508 3508 4540 7037 1239 6113 5696 2129 10:43:59 2117 sends withdraw

- BGP log of updates from AS2117 for route via AS2129
- One BGP withdrawal triggers 6 announcements and one withdrawal from 2117
- Increasing ASPath length until final withdraw

9


CDF of BGP Routing Table Convergence Times

- Less than half of Tdown events converge within two minutes
- Tup/Tshort and Tdown/Tlong form equivalence classes
- Long tailed distribution (up to 15 minutes)

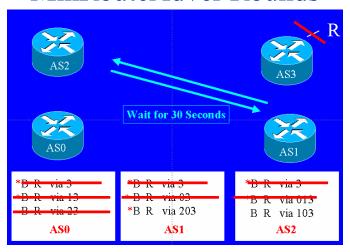

Impact of Delayed Convergence

- Why do we care about routing table convergence? It deleteriously impacts end-to-end Internet paths
- ICMP experiment results
 - Loss of connectivity, packet loss, latency, and packet re-ordering for an average of 3-5 minutes after a fault
 - Why? Routers drop packets for which they do not have a valid next hop. Also problems with cache flushing in some older routers.

Delayed Convergence Background

- Well known that distance vector protocols exhibit poor convergence behaviors
 - Counting to infinity, looping, bouncing problem
- RIP redefines infinity and adds split-horizon, poison reverse, etc.
 - Still, slow convergence and not scalable
- BGP advertises ASPaths instead of distance
 - Solves counting to infinity and RIP looping problem, but...
 - BGP can still explore "invalid" paths during convergence (i.e. the bouncing problem)

Intuition for Delayed BGP Convergence


- There exists possible ordering of messages such that BGP will explore ALL possible ASPaths of ALL possible lengths
 - BGP is **O**(*N*!), where *N* number of default-free BGP speakers in a complete graph with default policy
- Although seemingly very different protocols, BGP and RIP share very similar convergence behaviors. Major difference:
 - RIP explores metrics (1...N)
 - BGP ASPath provides multiple ways to represent metric (path) of length N, or (N-1)!

1.5

Lower Bound on BGP

- If assume optimal ordering of messages, what is the best we can expect from BGP?
- In practice, BGP timers (MinRouteAdver) provide synchronization and limit possible orderings of messages
 - MinRouteAdver timer specifies interval between successive updates sent to a peer for a given prefix
 - Useful for bundling updates together
 - According to RFC, MinRouteAdver applies only announcements
- But, interaction of MinRouteAdver and vendor ASPath loop detection implementation introduce "artificial" delay

MinRouteAdver Rounds

 Implementation of MinRouteAdver timer and receiver-side loop detection timer leads to 30 second rounds O(n-3)*30 seconds time complexity

Conclusion and Next Steps

- Internet does not posses effective inter-domain fail-over (15 minutes is a long time for phone call)
- Majority of BGP convergence delay due to vendor implementation decisions of MinRouteAdver and loop detection
- In practice, Internet is not a complete graph and same degree of message re-ordering unlikely. Our current work:
 - What is the impact of ISP policy and topology on BGP convergence?
 - Can we improve BGP convergence times?