SANE: A Protection Architecture For Enterprise Networks
Overview

- Introduction
- Current Enterprise Security Mechanisms
- Limitations of Current Security Mechanisms
- The SANE Architecture
- Preventing and Resisting Attacks with SANE
- Prototype Implementation of SANE
- Open Issues (personal opinion)
- Conclusions
Introduction

- Evolution of Enterprise networks
 - From simple LANs to complex Intranets.
 - Growth sustained by complex routing and switching.
 - Adoption of the Internet-based TCP/IP Protocol stack

- Original Internet design goals
 - Global connectivity
 - Decentralized control
 - Openness
 - No security considerations

- Implications
 - Rapid growth and popularity → huge success.
 - Medium for easy launch and spread of viruses, worms, malwares, etc
 - Internet-based attacks extends into the enterprise network → huge losses.
 - Security of the enterprise network can no longer to be ignored.
Current Security Mechanisms

- Firewalls, IDS, IPS, etc
- Access Control Lists (ACL)
- Network Address Translation (NAT)
- Virtual Local Area Networks (VLAN)
- Enhanced routing protocol and router security.
- Using hybrid trust models.
- Using distributed security policies made up of a combination of the above listed mechanisms running on separate systems as well as on a single system.
Limitations Of Current Mechanisms

- Complexity and difficulty in administration
- Concentrates mostly on secluded security aspects
- Most often only temporarily solves immediate problems
- Built-on solutions still lacks in features and have compatibility issues, e.g. IPSEC
- Fundamental problems still persist, attacks are still very common.
The SANE Architecture (1)

- **Definitions**
 - Capability: Encrypted source route between two communicating parties.

- **Design goals**
 - Establish architecture that supports simple but powerful natural policies, independent of topology and equipment used.
 - Implement security at link layer.
 - Hide all topology and services information from unauthorized parties.
 - Have only one trusted component within the network.

- **Approaches**
 - Modified network components (clean-slate approach).
 - Unmodified network component.

<table>
<thead>
<tr>
<th>Ethernet</th>
<th>SANE Header</th>
<th>IP Header</th>
<th>data</th>
</tr>
</thead>
</table>
The SANE Architecture (2)

- **The Domain Controller (DC)**
 - Central component in a SANE network.
 - Authenticates users and hosts.
 - Advertises and controls access to available services.
 - Uses capabilities to control communications in network.
 - Consists of 4 Service Modules in 3 functional units.

- **Functional Units of the DC**
 - Authentication Service Module
 - Network Service Directory Module
 - Protection Layer Controller
The SANE Architecture (3)

- **The Authentication Service Module**
 - Responsible for authenticating users, hosts and switches.
 - Exchanges and maintains a symmetric key with each.
 - Key is used to secure communication with each.

- **Network Service Directory Module**
 - Functions like the DNS of a SANE network
 - Maintains a hierarchy of directories and services
 - Uses ACL to control access to each directory and service
 - ACL is declared in terms of principals (users and groups).
The SANE Architecture (4)

- The Protection Layer Controller Module
 - Generates and revokes capabilities.
 - Keeps complete view of network topology.
 - Comprises of Topology and Capabilities service modules.

- Topology Service Module:
 Use of HELLO packets, Minimum Spanning Tree (MST) and link-state updates.
 - Use of HELLO packets for immediate neighbor discovery
 - MST only creates default routes for packet-forwarding to the DC.
 - MST prevents switches from learning topology, even via pkt traces.
 - Authenticated switches use link-state updates to inform DC of topology.
The SANE Architecture (5)

- Capability Service Module:
 - Capability: Switch-level source-route from client to server.
 - Capabilities are encrypted in layers (onion routes) to prove origin from DC and hide topology.
 - Created using client’s name & location, service’s location and the path between the two parties.

<table>
<thead>
<tr>
<th>HELLO</th>
<th>Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>Request Capability</td>
</tr>
<tr>
<td>FORWARD</td>
<td>Cap-ID</td>
</tr>
<tr>
<td>REVOKE</td>
<td>Cap-ID</td>
</tr>
</tbody>
</table>
The SANE Architecture (6)

Step 0
- authenticate with DC

Step 1
- Publish B.http
- Allow A access

Step 2
- Request capability to B.http

Step 3
- Use returned capability to communicate with B

Server B

Client A
SANE: Preventing Attacks

- Least privilege and centralized control excludes many vulnerabilities.
- NSD uses ACL to control access to Services and directories.
- Exclusive use of only encrypted source routes & encrypted link updates for communications.
- Allows communications only from authenticated principals and switches.
SANE: Resisting Attacks

- Resource exhaustion
 - Flooding attacks:
 > DC implements rate-limits on number of requests per sender.
 - Revocation state exhaustions:
 > Switch generates new key & invalidates existing capabilities.
 > DC tracks number of revocations per sender, removes sender if threshold is exceeded.

- Malicious switches
 - Disrupting MST discovery.
 - Bad link-state advertisement.

- Malicious Domain Controller
 - Highly trusted, can be single point-of-failure if compromised.
 - Use multiple DCs (threshold cryptography) to distribute trust.
SANE: Prototype Implementation

- Using workstations, Switches (10 Hops), IP proxies and a DC.
- MTU of workstations reduced to 1300 bytes to create SANE header.
- Use of Virtual Network System (VNS) to specify and test topology.
- Unmodified end-hosts supported by use of translation proxies.
- For authentication, DC pre-configured with public key of all switches.
- DNS queries of unauthenticated users resolves to DC's IP address.
- DC provides HTTP interface to browse, request and access directories and services.
- Scalability comparison with recorded traffic traces:
 - 47 Million packets
 - 20,849 DNS requests
 - 145,577 TCP connections
SANE: Evaluation

<table>
<thead>
<tr>
<th></th>
<th>5 hops</th>
<th>10 hops</th>
<th>15 hops</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>100,000 cap/s</td>
<td>40,000 cap/s</td>
<td>20,000 cap/s</td>
</tr>
<tr>
<td>Switch</td>
<td>762Mb/s</td>
<td>480Mb/s</td>
<td>250Mb/s</td>
</tr>
</tbody>
</table>

![Graphs showing DNS requests, TCP SYN packets, and max concurrent flows over trace length.](image-url)
SANE: Open Issues (Personal Opinion)

- Suitability in a hierarchical network environment.
- Support for VLAN.
- Effectiveness and robustness under harsher conditions, such as DDOS affecting multiple components.
- Effective support for services needing broadcast.
- Support for time-sensitive services, e.g. VoIP.
- DC as potential bottleneck and/or single point of failure, even when replicated.
Conclusions

- SANE reduces switching & routing complexity.
- Simplifies network topology and eases administration.
- Centralized approach, network topology concealment and least privilege principle exclude many possible vulnerabilities.
- Centralized approach takes away valuable processing power from otherwise robust switches and routers.
- Restrictive nature of SANE is good on one hand, but reduces flexibility and openness on the other.
- Nevertheless, SANE still provides a good basis with potentials to finally resolve a fundamental problem in an Enterprise network; … the security problem.