
Topic: Topology and Backbone Networking
DisCarte: A Disjunctive Internet Cartographer

Sebastian Schlunke
(schlunki@cs.tu-berlin.de)

Seminar “Internet Measurement”
Technische Universität Berlin

WS 2008/2009 (version of January 27, 2009)

Abstract

This paper covers problems of current topology inference techniques and introduces
DisCarte, a topology inference tool, that uses the IP record route option and disjunctive
logic programming to augment existing techniques. It is based on the paper “DisCarte:
A Disjunctive Internet Cartographer” by R. Sherwood, A. Bender and N. Spring [Dis08].

Topologies that are solely based on traceroutes and direct probing are often inaccu-
rate, due to unresponsive routers and network architectures, that have grown in size
and complexity. The record route option provides independent data, that can be used to
verify traceroute data and enhance topologies. DisCarte uses disjunctive logic program-
ming to combine traceroute and record route data. With the aid of observed network
engineering practices results will be generated, that are closer to reality.

I will discuss what the problems of current techniques are and how they are ad-
dressed by DisCarte. A divide and conquer approach will be presented, that allows
to scale the process to Internet size networks and it will be evaluated, to what extent
Discarte produces better results than other techniques.

1 Introduction

Information about the topology of a network, its internal structure, is of great interest
to researchers, developers and network operators. Such knowledge can be used to “de-
termine where losses, bottlenecks, failures and other undesirable and anomalous events
occur”. Also topologies, if precise enough, “benefit overlay constructions, network di-
agnostics, modeling and measurement”[Dis08].

Yet, this information is for various reasons rarely published by the network’s oper-
ator and the IP protocol does not provide support that would allow a direct analysis
of the network structure [Dis08]. The network topology has to be deduced from data
gained by measurements and observations. Tools currently used to infer network topolo-
gies are, for example, Rocketfuel, Paris traceroute or Passenger [Par06, Pas06, Rock02].
To gather the necessary data, all of them heavily depend on basic techniques like TTL-
limited-probes, i.e. traceroute and direct router probing. These methods are known to
produce inaccurate or erroneous data under certain circumstances. In order to increase

1



the completeness and correctness of discovered topologies it is required, that these errors
or inaccuracies are detected and, if possible, corrected.

“The often-ignored record route (RR) IP option provides a source of disparate topol-
ogy data”[Dis08] that can be used to complete and correct the data collected by tracer-
oute. The Passenger tool was developed using this approach and it has been observed,
that the different implementations of the record route option in routers pose a significant
problem when aligning traceroute and record route data [Pas06].

DisCarte addresses this problem. By using disjunctive logic programming (DLP),
traceroute and record route (RR) data is intelligently merged and crossvalidated “against
observed network engineering practices”[Dis08], providing more accurate and complete
results, than previous techniques.

In the following section traceroute based topology discovering techniques, their prob-
lems and limits, will be discussed before the RR option is introduced. How current tech-
niques can be augmented by using RR will be shown in Section 3. In Section 4 DisCarte
will be presented, its methods examined and in Section 5 the results will be discussed
and compared to conventional tools.

2 Background

In this section topology discovering based on traceroute is shortly described. It will
be discussed why this is error-prone, what circumstances cause failures and how these
failures distort the inferred topology. Afterwards the technical details of the RR option
and the resulting limits are presented.

2.1 Problems of Traceroute-based Topology Discovering Techniques

A router-level network topology consists of two things which have to be inferred, links
and aliases. While a link represents a connection between two IP addresses of different
routers, an alias pools different IP addresses that belong to different interfaces of the
same router. Links are found by traceroutes, whereas aliases can identified by direct
router probing.

Some sources of error are inherent to these techniques. Traceroute identifies links,
by sending packets with ascending TTL values until the target is reached. Each of these
packets should be answered by an ICMP time-exceeded reply. This answer contains the
IP address of the incoming interface of the corresponding router on the path to the target.
The problem is, that “TR [traceroute] assumes that sequential probes traverse the same
paths”[Dis08] and therefore concludes, that two routers are linked, if their IP addresses
have been exposed by ICMP replies to packets, whose TTL value differed by one.

But sequential probes are not necessarily routed on the same path, e.g. due to load
balancing. These “mid-measurement path instabilities cause TR [traceroute] to infer in-
correct links”[Dis08], because links, that do not exist are included in the topology, while
links that do exist, are missed. Routers may also be missed, if all traceroute probes with
appropriate TTL expire on alternative paths.

The results of a traceroute are further distorted by anonymous routers, hidden routers
and routers, that do not respond to direct probing.

Anonymous routers do not send an ICMP reply when packets expire, causing miss-
ing information that forms a significant source of error as links cannot be assigned and
aliases not resolved [Dis08].

Hidden routers do not alter the TTL value of a forwarded packet. As a consequence
they never generate an ICMP reply and cannot be detected by traceroute-based topology
discovery. This results in missing nodes and incorrect link inferences.

2



Routers, that do not respond to direct probing ignore packets directly addressed to
them, thus making alias resolution techniques1 based on characteristics of the IP packet
or the source address impossible. Unresolved aliases are biasing the degree distribution
of the network because they increase the number of detected routers in the topology,
while the number of links that each router has is decreased.

This behavior can be seen in Figure 1. The topology derived by Rocketfuel shows a lot
more routers than actually exist. Aliases have not been resolved and each inferred router
has only one interface. DisCarte however was able to resolve some aliases, inferring a
topology that is closer to reality. In [Dis08] it was observed, that a significant number
of routers (32%) do not respond to direct probing, making this a significant source of
inaccuracy.

Figure 1: Abilene topology: inferred by Rocketfuel (left), DisCarte (middle), and ac-
tual topology (right), rectangles are routers with interior ovals representing interfaces
(taken from [Dis08])

2.2 The Record Route Option

In addition to vital information like source and destination address IP datagrams (as
defined in [2]) provide a set of options, which can be used by the sender of an IP packet
to manipulate how a packet is processed by its receiver. One of these options is Record
Route. Within certain limitations, this option allows the sender to track the “path” a
packet takes. In the next sections the technical details of the RR implementation are
described and resulting problems discussed.

2.2.1 Technical Background

The options for an IP packet are stored in its header. The header, which can be described
as an array of bytes, can contain an area for options at its end. The RR option uses a part
of this area to store the addresses of the routers which forwarded the packet.

1A detailed description of these techniques can be found in [Rock02].

3



A router that forwards a packet with the RR option is instructed to add “its own Inter-
net address as known in the environment into which this datagram is being forwarded
into”[2] to the packets list of addresses.

Although the RR option allows to specify how much space is to be used for the ad-
dress list, the IP header itself is limited in size. It can be at maximum 15 · 4 byte blocks
long, of which 5 are reserved by definition and 1 is needed for the option itself, which
leaves 9 · 4 byte blocks for the address field. A packet whose address array is already
full, shall be forwarded without modifying the addresslist [2].

Therefore up to 9 addresses of the path a packet takes, can be recorded by the RR
option.

It should also be noted, that in the case of a TTL expiration, the header of the expired
packet is returned in the ICMP reply, including the RR option.

2.2.2 Limits & Problems

Due to its nature, the RR option is restricted in its usefulness and can even cause prob-
lems.

The RR option can only add information of the first nine hops on the path, indepen-
dent from the target. For larger networks, especially the Internet, nine hops is a very
small number. Thus the data that can be added with RR is strictly limited by the avail-
ability of a “geographically diverse set of vantage points”[Dis08], so that as much hosts
as possible can be reached within nine hops. Only for these parts of the network, RR can
increase the accuracy and completeness of the derived topology.

When using IP options like RR, it should be considered, that they are rarely used.
Packets with IP options set may be dropped by Firewalls, in which case just no infor-
mation is obtained, or even trigger intrusion detection systems, which target anomalous
events. Therefore probes with the RR option set should be done cautiously to prevent
reports of abuse.

3 Use of Record Route in DisCarte

DisCarte uses the RR option to improve the results of the analysis. The information
gathered with RR is merged with the data collected by conventional traceroutes in a
process called address alignment.

It will be discussed, how information is gathered by RR and what the limits and
problems are. Also the difficulties, which have to be considered when addresses are
aligned, will be studied and the benefits of using RR shown.

3.1 Address Alignment

In order to use the data gathered with RR, it has to be merged with the traceroute in-
formation. Every IP address discovered by traceroute has to be associated with an IP
discovered by RR and vice versa. This seems to be an easy task, as the router belonging
to an entry in the address list should be identifiable by its TTL distance to the source of
the packet.

Unfortunately several problems arise when collecting RR data, complicating the align-
ing of addresses.

4



3.1.1 Different Implementations

Although the RFC 791 clearly states how routers should behave, different kinds of RR
implementations have been observed. The observed implementations are:

Departing: The router updates the RR array with the address of its outgoing interface
when the packet is forwarded and leaving the router. If the packet expires no RR
entry is made.

MPLS: RR arrays are updated like in Departing routers, except for packets that arrive
over an interface, that is MPLS2-enabled. In this case the RR array is not modified.

NotImpl: The router ignores the RR option and does not modify the RR entries.

Arriving: The RR array is modified, when the packet arrives. But the address used can
be either the one of the outgoing interface or the internal loopback device.

Lazy: These routers update the RR array for packets with the RR option set, but they do
not decrement the TTL.

Mixed: Mixed routers behave like Departing routers, if the packet does not expire. If the
packet expires, the RR array is updated with the address of the incoming interface.

To correctly align addresses, it is necessary to assign an implementation type to each
router in a trace. The diversity of the implementations complicates the alignment pro-
cess, as an assignment is not necessarily distinct. Especially the NotImpl and Hidden
types cause ambiguous assignments for a given trace and RR array. We will see in Sec-
tion 4.2.2 how this problem is handled by DisCarte.

3.1.2 Topology Traps

Topology discovery can be complicated by certain characteristics of the very topology
that is to be discovered. Like the RR implementation in a router these “topology traps”[Dis08]
have to be detected and considered when merging data.

Hidden routers: This rare type of router cannot be discovered by the means of tracer-
outes. But they may be detected by RR. This has to be taken into account by the
inference tool.

Non-standard firewall policies: Packets with RR option set may be treated differently
than those without. This can result in working traceroutes without RR, but may
cause dropped packets or useless replies with RR.

Enabling IP options breaks load-balancing: IP packets with RR option set seem to break
some load-balancing algorithms, which would normally send packets belonging to
the same data flow to the same path. Packets with IP options may be send over
arbitrary paths of equal costs.

Different-length equal-cost paths: These paths can produce probes which have differ-
ent distances between the same source and destination. These probes may only be
compared if they traversed the same path or they “may cause false topology as-
sertions” and “create false links and aliases”[Dis08]. The RR data can be used to
divide the probes properly so that wrong conclusions are avoided.

RR fills: Due to the different RR implementations in routers, one hop may add more
than one RR entry. If the packet already contains eight entries, only one entry can
be made and the information for the second entry and the true number of entries are
lost. “For example, a packet with eight RR entries that transitions from a Departing
RR-type router to an Arriving RR-type router would normally receive two new RR
entries.”[Dis08]

2Multiprotocol Label Switching: a technique that allows routers to forward connection-oriented packets [1]

5



3.2 Advantages when using RR

The use of the RR IP option has several advantages. The first thing to be considered is,
that RR may be combined with traceroute, collection RR and traceroute data simultane-
ously. As explained in Section 2.2.2 the RR option may lead to unexpected behavior in
some cases, limiting the data that can be gathered with combined traceroutes. Another
possibility is to run the traceroute twice, with and without RR. In this case RR “provides
a source of disparate topology data”[Dis08], which means, that any information gained
with RR can only improve results that are based on traceroutes alone.

If address alignment is successful, RR can compensate some of the deficiencies of
traceroute, producing a more accurate and complete result.

It is possible to:

• resolve aliases without direct probing,
• expose hidden and anonymous routers (see Figure 2),
• discover multi-path load balancing and expose mid-measurement path instabili-

ties.

If a router implements the RR option, the IP address of one interface is revealed each
time a packet traverses the router. Aliases can be resolved, when packages traverse the
router in multiple directions. By using different incoming and outgoing interfaces, each
time another address of the router is discovered. However, the exact RR implementation
of a router must be known to assign all the detected addresses correctly to that router.

Hidden and anonymous routers will be found, if they implement the RR option, us-
ing their entry in the address list. This requires, that the other routers on a path contain-
ing the hidden/anonymous router have been correctly aligned, so that the entry belong-
ing to the router in question can be correctly identified.

As the RR option allows to track the path of a packet, its possible to decide, wether
two packets traversed the same path. In the case of path instabilities and load balanc-
ing the track record of affected packets would differ among them. By separating those
probes, false conclusions, that would have been possible when using traceroute data
alone, can be prevented when inferring the topology.

Figure 2 is an example, that compares a Rocketfuel inferred topology, which uses only
the means of traceroute, to a topology derived by DisCarte, that combines traceroutes
and RR. It can be seen, that DisCarte finds an anonymous router and load balanced
paths, whereas Rocketfuel misses both. The load balanced paths use different inferfaces
of the anonymous router R3. The missing router is indicated by the dotted rectangle in
the lower topology.

Figure 2: Partial Trace from Zhengzhou University, China to SUNY Stony Brook, USA;
inferred by DisCarte (top) and Rocketfuel techniques (bottom). DisCarte finds many
load-balanced path through an anonymous router (R3) (taken from [Dis08])

6



4 Inferring Topologies with DisCarte

With DisCarte a new approach in how to combine TTL-based data with RR-based data
has been presented. As explained in the previous sections, topologies inferred exclu-
sively from traceroutes can be improved by information gathered with RR, but only if
both data sets can be merged, that means that the found addresses have to be correctly
aligned. An earlier approach to this was made with Passenger, which used heuristics to
align data, but it showed that due to the limited flexibility of the heuristics only parts of
the data could be aligned [Pas06].

To align addresses and validate the result of the process, DisCarte utilizes disjunctive
logic programming (DLP) [Dis08]. In this chapter, a brief introduction to DLP will be
given and it will be shown how it is used by DisCarte to infer topologies. Subsequently
the crossvalidation and scaling techniques are presented, before the quality of the results
is discussed.

4.1 Disjunctive Logic Programming

DLP is an area within constraint logic programming [3]. A logic program generally con-
sists of facts and rules. Facts are statements that are, in terms of the logical program,
given and always true. Rules somehow combine facts and rules with (mostly) logical
operators. Within disjunctive logic programming rules may look like:

fact0 ⇒ rule1 ∨ · · · ∨ rulen

Thus the validity of one rule must be deducible from a fact. This fits the needs of Dis-
Carte, as exploration with traceroute produces a lot of information, which will be con-
verted to facts.

The so-called solver will try to find possible assignments for variables in a rule, so
that it becomes true. DisCarte will use this, to find possible RR implementations for
routers.

Additionally the DLP implementation used by DisCarte allows to define constraints
on the solutions and to price the solutions. There are strong and weak constraints. A
model that violates a strong constraint, can never be a solution to a logical program.
Weak constraints raise the costs of a model, if they are violated. “The output from a
DLP is the lowest cost model of inferred facts generated from input facts and inference
rules.”[Dis08]

4.2 Topology Generation with DLP

In order to generate a logical program, two things have to be supplied to the DLP solver
by DisCarte: facts and rules.

Facts will be generated from the raw trace data. They combine traceroute and RR
data in so-called probe pairs. The rules have been written as part of DisCarte. As earlier
mentioned, they have to consider the different RR implementations in the routers and
the topology traps.

4.2.1 DLP Fact Generation

The facts, that will be used in the DLP solver “consist of both straightforward parsing of
the data, deriving facts more easily computed without DLP, and probe pairs”[Dis08].

Facts that can be obtained by simple static analysis of the input data, are for example
routers with Mixed or Lazy RR implementation. The Mixed RR implementation is the
only type, that can cause a router to insert its incoming interface address into the RR

7



array. If a packet expires at router X with the appropriate ICMP reply and the last RR
entry is also X, then that router has to be of the Mixed RR type. This type can be detected
easily and added as fact without further concern.

This is different for the Lazy RR type. Routers with Lazy RR implementation do not
alter the TTL value, if IP options are set. That means, that packets with RR option will
never expire at such a router X, but at the next one, router Y. This makes it possible, to
identify Lazy routers. A router is Lazy, if all non RR probes with TTL t expire at router
X and all non RR probes with TTL t + 1 expire at Router Y, but RR probes with TTL t
expire at router Y. These wrong distances have to be corrected, before probe pairs are
formed.

The probe pairs are assembled from two subsequent TTL-limited probes. They have
the following form: “probePair(p1, p2, δ), where p1 and p2 are unique probe identifiers,
and δ is the difference between the size of the two RR arrays”[Dis08].

This is trivial for traceroute-only data, but may include errors, e.g. mid-measurement
path instabilities as discussed earlier, that go unnoticed.

The RR information can now be used, to make probe pair identification more accu-
rate. Probes, that have not traversed the same path, can be identified as the RR record
tracks their path. If the two probes do not share the same path, except maybe for the last
entry of the probe that went one hop further, they must not form probe pairs. Last, if
Lazy routers lie on different length paths, it is only possible to identify them on the path
used by non-RR probes [Dis08]. Information on other paths has to be discarded.

4.2.2 DLP Rules

The function of the DLP rules is to assign a implementation type to each router. Therefore
they describe all implementation types that would be possible for two routers in a given
probe pair and given δ.

A rule consists of a disjunction of terms in the form of:

transition(X, Y, RR-TypeX , . . . , RR-TypeY)

Such a transition rule either “assigns” a RR type to a router if X or Y are variables, or
tests wether X and Y have the required RR type. In this example, router X either has or
becomes assigned the RR implementation RR-TypeX , router Y respectively. As there are
routers, that are not found by solely traceroute-based techniques, like Hidden routers,
there may be nodes between X and Y, not affecting the TTL but increasing the number
of RR entries as well as δ.

To form a rule, these disjunctions are combined with a probe pair and a constraint to
δ, e.g.:

⇐ probePair(X, Y, δ), δ = 1.

As mentioned, probe pairs were defined as facts, with identifiers for every found router.
Such a rule demands, that if the facts contain a probe pair with δ = 1, then the routers X
and Y either already have a RR type so that one of the transition rules in the implication
holds true, or they can be assigned one.

8



An example for a rule used in DisCarte (taken from [Dis08]):

transition(X, Y, Departing, Departing) or
transition(X, Y, Arriving, Arriving) or

transition(X, Y, Departing, NotImpl) or
transition(X, Y, NotImpl, Arriving) or

transition(X, Y, NotImpl, Hidden, Departing) or
transition(X, Y, NotImpl, Hidden, NotImpl) or

⇐ probePair(X, Y, δ),
δ = 1.

This rule accumulates all possibilities for a probe pair whose RR arrays differ in size by
one. It should be noted, that also “special” cases, like Hidden routers or ones that do not
implement RR, have to be considered, which inflates the number of rules. As routers can
only have a distinct RR type, exactly one of the cases above has to apply.

As explained in the previous section, δ measures the difference in size of the RR-
arrays of two subsequent probes. Because of Hidden routers δ could be any positive
number, but due to the limited size of the RR option, only values in the range from
0 to 9 have to be considered. Furthermore the size of the rules increases dramatically
for greater δ and as values greater than 4 have not been observed by the developers of
DisCarte [Dis08], the rules cover only the values from 0 to 4.

4.2.3 Generated Solutions

The generated facts and defined rules allow the DLP solver to generate possible RR type
assignments for all found routers. As mentioned above, these solutions are pruned by
strong constraints, which reduces the number of solutions, and valued by weak con-
straints, which establishes an order between solutions.

There is only one strong constraint on the solution. All routers in a solution must
have the same RR implementation for all their interfaces respectively, or the solution
cannot be valid. A single router must not have different RR implementations on different
interfaces.

The weak constraints, which if violated raise the costs of a solution, have been chosen
to model several observed engineering practices, techniques or configurations that seem
to be common and often used. They may be violated in some cases, but if they are too
often, it can be assumed, that the model does not reflect reality. “Thus the model that
violates the fewest practices is likely to be the closest approximation of reality.”[Dis08]

Here is a list of weak constraints as used in DisCarte, ordered descending by their costs:

1. No self-loops: a router should never forward packets directly to itself. It is likely,
that in such a solution two distinct routers have been merged due to a wrongly
assigned alias.

2. In order to conserve address space by using the smallest network block possible,
network architects often assign IP addresses on either side of a link, that differ only
in one bit. (An example for this can be seen in Figure 2)

3. If a router supports direct probing, the obtained information about its aliases are
often correct and should be used over the inferred ones.

4. Hidden routers have been observed to be rare, thus a solution with few hidden
routers is better than a solution that contains many of them.

9



5. Routers that do not implement RR been observed to be more rare that those who
do, thus a solution with few router of RR type NotImpl is better than one with
many.

It is possible, that several solutions with the same costs are generated. In this case the
information has not been sufficient enough to enforce a unique solution. On the other
hand, there may be no solution. This is likely to be the case, if the data was contradictory
or the model erroneous.

4.3 Handling Large Networks

The process presented above, has to be adjusted before it can be applied to large, or Inter-
net sized networks. This is because large networks produce a lot of measurement data,
i.e., a lot of probe pairs are generated and “the number of possible RR implementation
assignments grows exponentially with the number of probe pairs.”[Dis08]

DisCarte tries to cope with this problem, by using the divide and conquer pattern.
The data is processed in small parts, reducing the solution space for each part consid-
erably. Then the solutions are merged together. When merging the data, conflicts may
occur. That means, that in one solution two IPs were deduced to be aliased, while in
another solution they appear to be linked. These conflicts have to be solved, before a
topology can be extracted.

The data is processed in the following way:

1. All two-cliques, that means for all sites S1 and S2 the traces from site S1 to S2 and
vice versa, are computed. (see Figure 3)

2. For all triangle-like subsets the traces from S1 and S2 to all destinations D are com-
puted, as shown in Figure 3. As the paths between S1 and S2 have already been
computed and contain no conflicts anymore, they can be used as overlap for cross-
validation when computing the paths to D.

3. The deduced facts are extracted and compared to expose contradictions.
4. In the case of a conflict, the input sets of the conflicting models are processed to-

gether via DLP. If this produces a single solution, the conflict is solved and the
correct state of the IPs is transferred to all affected models, which are recomputed
via DLP. Multiple solutions indicate, that the information is insufficient to solve the
conflict, while no solution can hint at erroneous input data or a new RR behavior.

It has shown that this technique provides datasets, that are small enough to be processed
rapidly, but do still provide enough information for the DLP to produce meaningful
results. Also the number of conflicts when merging the results are reduced. However,
if a conflict cannot be resolved, all related facts have to be removed from the model, as
their data is not reliable.

5 Results

The results produced by DisCarte have been tested and judged regarding accuracy and
completeness. First the ability to deduce aliases has been compared to those of Rock-
etfuel’s alias resolution tool Ally. Second, topologies inferrend by DisCarte, Rocketfuel
and Passenger have been compared among each other and against published topologies
of four research networks.

In probes between PlanetLab nodes, and from PlanetLab nodes to the advertised BGP
prefixes, it showed, that DisCarte found about 11% more aliases than the direct probe-
based techniques of Rocketfuel’s Ally. Of these aliases 92% had only been found because
of the added RR option [Dis08].

10



Figure 3: First all addresses in two-cliques (left) between all sources are aligned and
then subset triangles (right) to all destinations increasing overlap and decreasing er-
rors. (taken from [Dis08])

The evaluation of the results produced by DisCarte, Rocketfuel and Passenger re-
garding the inferred routers can be found in Figure 4. The figure shows for each tool the
number of correct identified routers (Good), the number of routers that have not been
found (Missed), the number of routers that have been merged and mistaken for single
router (Merged) and the number of routers, where aliases have been mistaken as distinct
router (Split). It can be seen, that Rocketfuel is not able to resolve any aliases, because of
routers unresponsive to direct probing. Thus a single router is assumed for each IP, pro-
ducing a lot of “splitted routers”. DisCarte and Passenger in contrast are able to correctly
identify some aliases, due to the RR option. It also shows, that DisCarte was in three of
four tests able to identify more routers correctly than any other tool and that there were
no incorrectly merged routers.

Figure 4: Number of discovered routers compared to published topologies. (taken
from [Dis08])

Additionally DisCarte inferred no false links and discovered more than 63% of the
existing links [Dis08].

6 Conclusion

Topology discovery is becoming an increasingly difficult task, especially for the Internet.
Not only that the networks are steadily growing, in both, size and complexity, but also
the data that can be acquired in conventional ways, becomes less informative and con-
nected. And although it is easy to gather a huge amount of data, this is not sufficient
enough to create models, that are an accurate image of reality. The ability to reconnect
the gathered facts and draw reliable conclusions is required to produce usable results.

11



DisCarte has proved, that the combination of disjunctive logic programming, the IP
record route option and conventional traceroutes significantly increases the quality of
the inferred topologies. The record route option improves results in two ways. On the
one hand RR is able to verify traceroute data, as it ensures path consistency, and on the
other hand it can find aliases and routers, that cannot be detected by traceroutes.

DLP provides a simple yet powerful basis for the modeling of alignment rules and
the crossvalidation of inferred data with network engineering practices, allowing a more
accurate alignment and interpretation. But the power of DLP comes at the costs of higher
computing times. However, the divide and conquer approach allows scaling the process
to the mass of data that is generated, when analyzing larger networks.

Therefore if the analyzed networks are small or sufficient processing power is avail-
able, then DisCarte is an alternative that produces more exact result than alternative
traceroute-based discovery tools.

References

[Dis08] Rob Sherwood, Adam Bender, Neil Spring: DisCarte: A Disjunctive Internet
Cartographer; ACM SIGCOMM 2008.

[Pas06] Rob Sherwood, Neil Spring: Touring the Internet in a TCP Sidecar; ACM 2006.

[Par06] B. Augustin, et al.: Avoiding traceroute anomalies with Paris traceroute; ICM
2006.

[Rock02] N. Spring, R. Mahajan, D. Wetherall: Measuring ISP topologies with Rocket-
fuel; ACM 2002.

[1] Wikipedia: http://de.wikipedia.org/wiki/MPLS; version of January 18, 2009.

[2] J. Postel, editor. Internet protocol: IETF RFC-791 http://tools.ietf.org/html/
rfc791; 1981.

[3] Frieder Stolzenburg: A Flexible System for Constraint Disjunctive Logic Program-
ming; University of Koblenz 1996.

12

http://de.wikipedia.org/wiki/MPLS
http://tools.ietf.org/html/rfc791
http://tools.ietf.org/html/rfc791

	Introduction
	Background
	Problems of Traceroute-based Topology Discovering Techniques
	The Record Route Option
	Technical Background
	Limits & Problems


	Use of Record Route in DisCarte
	Address Alignment
	Different Implementations
	Topology Traps

	Advantages when using RR

	Inferring Topologies with DisCarte
	Disjunctive Logic Programming
	Topology Generation with DLP
	DLP Fact Generation
	DLP Rules
	Generated Solutions

	Handling Large Networks

	Results
	Conclusion

