Network Protocols and Architectures

Introduction

1

What's the Internet: "nuts and bolts" view

- Millions of connected computing devices: hosts, end-systems
 - PC's workstations, servers
 - PDA's, phones, toasters running network apps
- Communication links
 - Fiber, copper, radio, satellite
- Routers: forward packets (chunks) of data through network

What's the Internet: "nuts and bolts" view

- Protocols: control sending, receiving of messages
 - o E.g., TCP, IP, HTTP, FTP, PPP
- Internet: "network of networks"
 - Loosely hierarchical
 - Public Internet versus private intranet
- Internet standards
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

3

What's the Internet: A service view

- Communication *infrastructure* enables distributed applications:
 - WWW, email, games, ecommerce, database, voting,
 - More?
- Communication services provided:
 - Connectionless
 - Connection-oriented
- cyberspace [Gibson]:

"a consensual hallucination experienced daily by billions of operators, in every nation,"

A closer look at network structure

- Network edge: applications and hosts
- □ Network core:
 - Routers
 - Network of networks
- Access networks, physical media: Communication links

5

The network edge

- End systems (hosts):
 - Run application programs
 - o E.g., WWW, e-mail
 - At "edge of network"
- Client/server model
 - Client host requests, receives services from server
 - E.g., WWW client (browser)/ server; e-mail client/server
- □ Peer-peer model:
 - Host interaction symmetric
 - E.g., teleconferencing

Network edge: connection-oriented service

- *Goal:* data transfer between end sys.
- Handshaking: setup (prepare for) data transfer ahead of time
 - Hello, hello back human protocol
 - Set up "state" in two communicating hosts
- TCP Transmission Control Protocol
 - Internet's connectionoriented service

TCP service [RFC 793]

- Reliable, in-order bytestream data transfer
 - Loss: acknowledgements and retransmissions
- □ Flow control:
 - Sender won't overwhelm receiver
- Congestion control:
 - Senders "slow down sending rate" when network congested

7

Network edge: connectionless service

Goal: Data transfer between end systems

- Same as before!
- □ UDP User Datagram Protocol [RFC 768]: Internet's connectionless service
 - Unreliable data transfer
 - No flow control
 - No congestion control

The network core

- Mesh of interconnected routers
- The fundamental question: How is data transferred through net?
 - Circuit switching:
 Dedicated circuit per call: telephone net
 - Packet switching: Data sent through net in discrete "chunks"

9

Network core: Circuit switching

End-end resources reserved for "call"

- Link bandwidth, switch capacity
- Dedicated resources: no sharing
- Circuit-like (guaranteed) performance
- Call setup required

Network core: Packet switching

Each end-end data stream divided into packets

- ☐ Users' A, B packets *share* network resources
- □ Each packet uses full link bandwidth
- □ Resources used *as needed*

11

Network core: Packet switching

Packet-switching versus circuit switching: Human restaurant analogy

Network core: Packet switching

Resource contention:

- ☐ Aggregate resource demand can exceed amount available
- Congestion: packets queue, wait for link use
- ☐ Store and forward: packets move one hop at a time
 - Transmit over link
 - Wait turn at next link

13

Packet switching vs. circuit switching

Is packet switching a "slam dunk winner?"

- Great for bursty data
 - Resource sharing
 - No call setup
- Excessive congestion: packet delay and loss
 - Protocols needed for reliable data transfer, congestion control
- Q: How to provide circuit-like behavior?
 - Bandwidth guarantees needed for audio/video apps still an unsolved problem

Packet-switched networks: Routing

- Goal: Move packets among routers from source to destination
 - We'll study several path selection algorithms
- Datagram network:
 - Destination address determines next hop
 - Routes may change during session
 - Analogy: driving, asking directions
- Virtual circuit network:
 - Each packet carries tag (virtual circuit ID), tag determines next hop
 - Fixed path determined at call setup time, remains fixed through call
 - Routers maintain per-call state

15

Protocol "layers"

Networks are complex!

- Many "pieces":
 - Hosts
 - Routers
 - Links of various media
 - Applications
 - Protocols
 - Hardware, software

Question:

Is there any hope of organizing structure of network?

Or at least in our discussion of networks?

Why layering?

Dealing with complex systems:

- Explicit structure allows identification, relationship of complex system's pieces
 - Layered reference model for discussion
- Modularization eases maintenance, updating of system
 - Change of implementation of layer's service transparent to rest of system
 - E.g., change in gate procedure does not affect rest of system
- Layering considered harmful?

17

<u>Internet protocol stack</u>

- Application: supporting network applications
- ☐ Transport: host-host data transfer
- Network: uniform format of packets, routing of datagrams from source to destination
- Link: data transfer between neighboring network elements
- Physical: bits "on the wire"

application

transport

network

link

physical

Principles of the Internet

- ☐ Edge vs. core (end-systems vs. routers)
 - Dumb network
 - Intelligence at the end-systems
- Different communication paradigms
 - Connection oriented vs. connection less
 - Packet vs. circuit switching
- Layered System
- □ Network of collaborating networks