
1

1

TCP
❒ Transport protocol:

❍ Communication between applications
❍ API: sockets
❍ Uses IP as network protocol
❍ De-/Multiplexing via port numbers

❒ Point-to-point:
❍ One sender, one receiver

❒ Full duplex data:
❍ MSS: maximum segment size

• IP is packet switching
❍ Bi-directional data flow in same connection

• Bi-directional byte stream

2

TCP (cont.)
❒ Pipelined

❍ Multiple packet in flight
❍ Controlled via sliding window of size n:

• Can send up to n bytes without ack
• When data acked window slides forward

❒ Flow controlled
❍ Sender will not overwhelm receiver
❍ Use receiver side window
❍ Receiver explicitly informs sender of (dynamically changing)

amount of free buffer space
❍ Depends on consuming application
❍ Persist timer

• If rwnd = 0
• Exponentially backed off (up to 60 s)

2

3

TCP (cont.)

❒ Reliable, in-order byte stream
❍ No “message boundaries”
❍ Sequence numbers (per byte)
❍ Acknowledgements (per byte)

• Cumulative
• Selective
• Delayed

– Max 2 packets or 200 ms
– Always ACK out of order data

❍ Retransmissions
• Timeout based on RTT estimation
• Three duplicated ACKs

4

TCP (cont.)

❒ Reliable, in-order byte stream (cont.)
❍ RTT (round trip time) estimation:

• Smoothed RTT estimation
– RTT = a*RTT + (1-a) * measured RTT

• Single timer for all connections
– Typically every 500 ms

• Traditional:
– Single packet per window
– Invalid by retransmitted packets

• New:
– Timestamp option for every window

❍ RTO (recovery time objective):
• Static: RTO = b*RTT (b=2)
• Dynamic: RTO = RTT + 4*D

D = smoothed RTT deviation

3

5

TCP (cont.)
❒ Reliable, in-order byte stream (cont.)

❍ Small packets == silly window syndrome:
• Sender side (Nagle)

– Only one partial packet outstanding
• Receiver side (Clark)

– Only advertise reasonable window changes
– Min(MSS, ½ of receiver buffer space)

6

TCP (cont.)
❒ Connection-oriented

❍ Handshaking (exchange of control msgs) init’s sender, receiver
state before data exchange

❍ Control flags:
• SYN: connection establishment
• FIN: connection close
• RST: connection reset
• SYN, FIN use one byte of segment space

enables reuse of existing mechanisms
❍ Connection establishment:

• 3-way handshake
❍ Connection teardown

• 4-way handshake
❍ Initial sequence number: best unpredictable
❍ Receiver state: for flow control
❍ Time wait state: avoid reuse of sockets

4

7

TCP (cont.)
❒ TCP congestion control

❍ Sender will not overwhelm network
❍ End-to-end control
❍ Congestion detection

• Lost packets
• Marked packets

❍ Use sender side window
• Cwnd

❍ AIMD for window size control
• Additive increase
• Multiplicative decrease

8

TCP (cont.)
❒ TCP congestion control (cont.)

❍ Selfclocking
• ACK clocking

❍ Two stages
• Reaching equilibrium

– Slow start
• Adapting to resource availability

– Congestion avoidance

5

9

TCP (cont.)
❒ TCP congestion control (cont.)

❍ Slow start
• Init:

– cwnd = MSS
– ssthresh = 64K

• ACK:
– cwnd += MSS
– If (cwnd > ssthresh)

congestion avoidance
• Timeout:

– cwnd = MSS
– RTO = min(2*RTO, 64 s)
– restart

10

TCP (cont.)
❒ TCP congestion control (cont.)

• Congestion avoidance
• ACK:

– cwnd += MSS/cwnd
• Lost packet indication:

• ssthresh = max(min(rwnd, cwnd)/2, 2*MSS)
• RTO = min(2*RTO, 64 s)
• Cont or switch to slow start

6

11

TCP (cont.)
❒ TCP congestion control (cont.)

• Retransmissions
• Fast retransmit

– Receiver acks out-of-order segments immediately
– >= 3 duplicate ACKs lost packet
– Retransmit packet
– Switch to slow start

• Fast recovery
– Fast retransmit
– Congesting avoidance
– (Allowed to transmit packet for every dup ACK)

• Partial ACK
– Not all outstanding data is Acked after retransmission
– Retransmit next packet

