Network Protocols and Architectures

Introduction
What’s the Internet: “nuts and bolts” view

- Millions of connected computing devices: *hosts, end-systems*
 - PC’s workstations, servers
 - PDA’s, phones, toasters
 running *network apps*

- *Communication links*
 - Fiber, copper, radio, satellite

- *Routers:* forward packets (chunks) of data through network
What’s the Internet: “nuts and bolts” view

- **Protocols**: control sending, receiving of messages
 - E.g., TCP, IP, HTTP, FTP, PPP

- **Internet**: “network of networks”
 - Loosely hierarchical
 - Public Internet versus private intranet

- Internet standards
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force
What’s the Internet: A service view

- Communication infrastructure enables distributed applications:
 - WWW, email, games, e-commerce, database, voting,
 - More?

- Communication services provided:
 - Connectionless
 - Connection-oriented

- cyberspace [Gibson]:
 "a consensual hallucination experienced daily by billions of operators, in every nation,"
A closer look at network structure

- **Network edge:**
 - applications and hosts

- **Network core:**
 - Routers
 - Network of networks

- **Access networks, physical media:**
 Communication links
The network edge

- **End systems (hosts):**
 - Run application programs
 - E.g., WWW, e-mail
 - At “edge of network”

- **Client/server model**
 - Client host requests, receives services from server
 - E.g., WWW client (browser)/server; e-mail client/server

- **Peer-peer model:**
 - Host interaction symmetric
 - E.g., teleconferencing
Network edge: connection-oriented service

Goal: data transfer between end sys.

- **Handshaking:** setup (prepare for) data transfer ahead of time
 - Hello, hello back human protocol
 - *Set up “state”* in two communicating hosts

- **TCP – Transmission Control Protocol**
 - Internet’s connection-oriented service

TCP service [RFC 793]

- **Reliable, in-order byte-stream data transfer**
 - Loss: acknowledgements and retransmissions

- **Flow control:**
 - Sender won’t overwhelm receiver

- **Congestion control:**
 - Senders “slow down sending rate” when network congested
Network edge: connectionless service

Goal: Data transfer between end systems
 - Same as before!

- **UDP** – User Datagram Protocol [RFC 768]: Internet’s connectionless service
 - Unreliable data transfer
 - No flow control
 - No congestion control
The network core

- Mesh of interconnected routers
- **The fundamental question:** How is data transferred through net?
 - Circuit switching: Dedicated circuit per call: telephone net
 - Packet switching: Data sent through net in discrete “chunks”
Network core: Circuit switching

End-end resources reserved for “call”

- Link bandwidth, switch capacity
- Dedicated resources: no sharing
- Circuit-like (guaranteed) performance
- Call setup required
Network core: Packet switching

Each end-end data stream divided into *packets*

- Users’ A, B packets *share* network resources
- Each packet uses full link bandwidth
- Resources used *as needed*
Network core: Packet switching

Packet-switching versus circuit switching:
Human restaurant analogy
Network core: Packet switching

Resource contention:
- Aggregate resource demand can exceed amount available
- Congestion: packets queue, wait for link use
- Store and forward: packets move one hop at a time
 - Transmit over link
 - Wait turn at next link
Packet switching vs. circuit switching

Is packet switching a “slam dunk winner?”

- Great for bursty data
 - Resource sharing
 - No call setup
- Excessive congestion: packet delay and loss
 - Protocols needed for reliable data transfer, congestion control
- Q: How to provide circuit-like behavior?
 - Bandwidth guarantees needed for audio/video apps still an unsolved problem
Packet-switched networks: Routing

- **Goal:** Move packets among routers from source to destination
 - We’ll study several path selection algorithms

- **Datagram network:**
 - *Destination address* determines next hop
 - Routes may change during session
 - Analogy: driving, asking directions

- **Virtual circuit network:**
 - Each packet carries tag (virtual circuit ID), tag determines next hop
 - Fixed path determined at *call setup time*, remains fixed through call
 - Routers maintain per-call state
Protocol “layers”

Networks are complex!
- Many “pieces”:
 - Hosts
 - Routers
 - Links of various media
 - Applications
 - Protocols
 - Hardware, software

Question:
Is there any hope of organizing structure of network?

Or at least in our discussion of networks?
Why layering?

Dealing with complex systems:
- Explicit structure allows identification, relationship of complex system’s pieces
 - Layered **reference model** for discussion
- Modularization eases maintenance, updating of system
 - Change of implementation of layer’s service transparent to rest of system
 - E.g., change in gate procedure does not affect rest of system
- Layering considered harmful?
Internet protocol stack

- **Application**: supporting network applications
- **Transport**: host-host data transfer
- **Network**: uniform format of packets, routing of datagrams from source to destination
- **Link**: data transfer between neighboring network elements
- **Physical**: bits “on the wire”
Layering: *Logical* communication

Each layer:
- Distributed
- “Entities” implement layer functions at each node
- Entities perform actions, exchange messages with peers
Layering: Logical communication

E.g., transport
- Take data from application
- Add addressing, reliability check info to form “datagram”
- Send datagram to peer
- Wait for peer to ack receipt
- Analogy: post office
Layering: *Physical* communication
Internet structure: Network of networks

- Roughly hierarchical
- National/international backbone providers (NBPs)
 - E.g., BBN/GTE, Sprint, AT&T, IBM, UUNet
 - Interconnect (peer) with each other privately, or at public Network Access Point (NAPs)
- Regional ISPs
 - Connect into NBPs
- Local ISP, company
 - Connect into regional ISPs
Principles of the Internet

- Edge vs. core (end-systems vs. routers)
 - Dumb network
 - Intelligence at the end-systems
- Different communication paradigms
 - Connection oriented vs. connection less
 - Packet vs. circuit switching
- Layered System
- Network of collaborating networks