TCP congestion control:

0 “Probing” for usable
bandwidth:

0 Ideally: transmit as fast as
possible (cwnd as large as
possible) without loss

0 Increase cwnd until loss
(congestion)

0 Loss: decrease cwnd, then
begin probing (increasing)
again

TCP _congestion control: Additive increase,
multiplicative decrease

0 Approach: Increase transmission rate (window size),
probing for usable bandwidth, until loss occurs

0 Additive increase. Increase cwnd by 1 MSS every
RTT until loss detected

0 Multiplicative decrease. Cut cwnd in half after loss

]

1ze

4 Kbytes —|

Saw tooth
behavior: probing
for bandwidth

6 Kbytes |

8 Kbytes —

congestion window s

time

time

TCP congestion control: Details

0 Sender limits transmission: How does sender
LastByteSent-LastByteAcked perceive conqestion?
< cwnd 0 Loss event = timeout or
0 Roughly, 3 duplicate acks
ate = cownd o 0 TCP sender reduces
B RTT ytes/sec rate (cwnd) after loss
event
0 cwnd is dynamic, function of Three mechanisms:
perceived network congestion [AIMD
0 Slow start

o Conservative after
timeout events

TCP slow start

0 How do we get the clocking behavior to start?
0 Initialize cwnd = 1 MSS (typically 1460 bytes)
0 Upon receipt of every ack, cwnd = cwnd + 1 MSS
0 Implications
0 Window actually increases to W in RTT * log,(W)
0 Exponential increase up to first loss event
0 Can overshoot window and cause packet loss

0 Summary: initial rate is slow but ramps up
exponentially fast

Slow start example

One RTT

OR

+—>

One pkt time

IR @

2R @ _ B3

(4 16]
(5171
R @A © @

Slow start example (cont.)

@ Host A Host B@
W’I

%

g

time

|

«—RTT—

Slow start sequence number plot

Sequence No

Time

Congestion window

Congestion
Window

Time

Congestion avoidance

0 When reaching threshhold (ssthresh) go from
slow start to congestion avoidance
1 Upon receiving ACK
0 Increase cwnd by MSS/cwnd
0 Results in additive increase
0 Loss implies congestion — why?
0 Not necessarily true on all link types

Congestion avoidance sequence plot

O000oooopoo

00000

Sequence No

0000 oppgpgggg

Ooooopoo

Time

10

Return to slow start

0 If packet is lost we lose our self clocking as well

0 Need to implement slow-start and congestion avoidance
together

11

Congestion window

Congestion
Window

/

Time

12

Return to slow start (cont.)

0 If packet is lost we lose our self clocking as well

0 Need to implement slow-start and congestion avoidance
together

11 When loss occurs set
0 ssthresh to 0.5w
0 cwnd to 1 MSS (TCP-Tahoe)

13

Overall TCP behavior

Window

Time

14

TCP congestion control: Summary

0 “Probing” for usable 0 Two “phases”
bandwidth: o Slow start
0 Ideally: transmit as fast as o Congestion avoidance
possible (cwnd as largeas 1 1yortant variables:
possible) without loss . cwnd

0 Increase cwnd until loss
(congestion)

0 Loss: decrease cwnd, then
begin probing (increasing)
again

0 Threshold: defines
threshold between two slow
start phase, congestion
control phase

15

TCP slow start

~Slowstart algorithm

initialize: cwnd = 1 MSS
for (each segment ACKed)
cwnd += 1 MSS

until (loss event OR

cwnd > threshold)

O Exponential increase (per RTT)
in window size (not so slow!)

0 Loss event: timeout and/or or |
three duplicate ACKs

16

TCP congestion avoidance

A threshold
threshold

- Congestion avoidance

/* slowstart is over */
/* ewnd > threshold */
Until (loss event) {
every w segments ACKed:
cwnd += 1 MSS
Y
threshold = cwnd /2
cwnd = 1 MSS T T T T
perform SIOW Start] 012 345678 21011121314

Mumber of transrmissions

—
O
T T T T T T 1T T

]

Congestion window (in segments)

PR S R s 1]

1: TCP Reno skips slowstart (fast
recovery) after three duplicate ACKs
17

TCP flavors

0 Tahoe, Reno, Vegas, SACK

0 TCP Tahoe (distributed with 4.3BSD Unix)
0 Original implementation of Van Jacobson’s mechanisms

0 Includes:
¢ Slow start
« Congestion avoidance
¢ Fast retransmit

18

Fast retransmit

0 What are duplicate acks (dupacks)?
0 Repeated acks for the same sequence
0 When can duplicate acks occur?
0 Loss
0 Packet re-ordering
0 Window update — advertisement of new flow control window
0 Assume re-ordering is infrequent and not of large
magnitude
o Use receipt of 3 or more duplicate acks as indication of loss
0 Don't wait for timeout to retransmit packet

19

Fast retransmit

Retransmission
,— Retransmissio

Sequence No emo « Duplicate Acks

o000000 Ogooooooooo

ecoconmmooooo

eedonoO

enonO

Time

10

TCP Reno (1990)

0 All mechanisms in Tahoe
0 Addition of fast-recovery
0 Opening up congestion window after fast retransmit
0 Delayed acks
0 Header prediction

0 Implementation designed to improve performance
0 Has common case code inlined

0 With multiple losses, Reno typically timeouts because it
does not see duplicate acknowledgements

21

Fast recovery

0 Skip slow start. On 3 dup ack event:
0 ssthresh <- 0.5cwnd
0 cwdn <- sstresh

0 Each duplicate ack notifies sender that
single packet has cleared network

0 When < cwnd packets are outstanding

0 Allow new packets out with each new duplicate
acknowledgement

22

11

Fast recovery

oe
E (o]
g8 o
o e
S
o
o
[m]
o
8
8 Sent for each dupack after
Sequence No g W/2 dupacks arrive
X =]
[m] O 0OCDOOO
[m]]
[m] (]
[m] o
[m] o
[m] o
[m] (]
o
o
]
(6]
Time

TCP sender congestion control

(Reno)

State Event TCP Sender Action Commentary
Slow Start ACK receipt | cwnd = cwnd + MSS, Resulting in a doubling of
(SS) for previously | If (cwnd > Threshold) cwnd every RTT
unacked set state to “Congestion
data Avoidance”
Congestion ACK receipt | cwnd = cwnd +MSS / (cwnd) Additive increase, resulting
Avoidance for previously in increase of cwnd by 1
(CA) unacked MSS every RTT
data
SSor CA Loss event Threshold = cwnd /2, Fast recovery,
detected by cwnd = Threshold, implementing multiplicative
triple Set state to “Congestion decrease. cwnd will not
duplicate Avoidance” drop below 1 MSS.
ACK
SSor CA Timeout Threshold = cwnd /2, Enter slow start
cwnd =1 MSS,
Set state to “Slow Start”
SSor CA Duplicate Increment duplicate ACK count | cwnd and Threshold not
ACK for segment being acked changed

24

12

Multiple losses

o
o
§
o Now what?
X —
o (¢) e .
= — Retransmission
X o
[m] o 0000 <« :
Sequence No o ° Duplicate Acks
[m] (&)
[m] o
[m] o
[m] (&)
[m] o
[m] <]
[m] <]
[m] [¢]
[m] <]
[m] <]
[m] [¢]
o e
Time
25
o
o
o o
o
o
o ()
o o
¢ o
o ()
o
X o
[m] () [eeee)
Sequence No o °
[m] ()
[m] ()
[m] ()
[m] ()
[m] [¢]
[m] [¢]
[m] [¢]
[m] [¢]
[m] [¢]
[m] [¢]
o e
Time
26

13

Reno

a

® Now what? > timeout

i

Sequence No

eeeonOOOOOOR
eeo0o0000 DDNDDWDDD

eedomOoO

enonO

Time

NewReno

0 The ack that arrives after retransmission (partial
ack) should indicate that a second loss occurred
0 When does NewReno timeout?
0 When there are fewer than three dupacks for first loss
0 When partial ack is lost
0 How fast does it recover losses?
0 One per RTT

28

14

NewReno

o
o (]
o}

Now what? = partial ack
recovery

i

Sequence No

eeeonOOOOOOR
eeo0o0000 DDNDDWDDD
en

eedomOoO

enonO

Time

SACK

0 Basic problem is that cumulative acks only provide
little information

0 Ack for just the packet received
e What if acks are lost? - carry cumulative also
¢ Not used

0 Bitmask of packets received
» Selective acknowledgement (SACK)

1 How to deal with reordering

30

15

SACK (cont.)

o
o
o
]
]
o
a
X o
o h
o Now what? — send
¢ o ..
s 0 om0 retransmissions as soon
Sequence No o : as detected
] (o]
] (o]
] (o]
] (o]
] (o]
] (o]
] (9]
] (o]
] (o]
] (9]
] (o]
Time
31

Performance issues

0 Timeout >> fast rexmit
0 Need 3 dupacks/sacks

0 Not great for small transfers
* Don't have 3 packets outstanding

0 What are real loss patterns like?
0 Right edge recovery

0 Allow packets to be sent on arrival of first and second
duplicate ack

0 Helps recovery for small windows
0 How to deal with reordering?

32

16

TCP extensions

0 Implemented using TCP options
0 Timestamp
0 Protection from sequence number wraparound
0 Large windows

33

Protection from wraparound

0 Wraparound time vs. link speed
e 1.5Mbps: 6.4 hours
¢ 10Mbps: 57 minutes
e 45Mbps: 13 minutes
e 100 Mbps: 6 minutes
* 622 Mbps: 55 seconds > < MSL!
e 1.2Gbps: 28 seconds

0 Use timestamp to distinguish sequence number

wraparound

34

17

Large windows

0 Delay-bandwidth product for 100 ms delay
e 1.5Mbps: 18KB
e 10 Mbps: 122 KB > max 16 bit window
¢ 45Mbps: 549 KB
e 100Mbps: 1.2MB
¢ 622 Mbps: 7.4MB
¢ 1.2Gbps: 14.8MB

0 Scaling factor on advertised window

0 Specifies how many bits window must be
shifted to the left

0 Scaling factor exchanged during connection

cabiin

35

Maximum segment size (MSS)

[Exchanged at connection setup
0 Typically pick MTU of local link

0 What all does this effect?
0 Efficiency
0 Congestion control
0 Retransmission
0 Path MTU discovery
0 Why should MTU match MSS?

36

18

Effects of TCP latencies

Q: client latency for object Notation, assumptions:

request from WWW 0 Assume: fixed congestion
server to receipt? window, W, giving

71 TCP connection throughput of R bps
establishment 0 S: MSS (bits)

0 Data transfer delay 0 O: object/file size (bits)

0 No retransmissions (no loss,
no corruption)

Two cases to consider:
0 Case 1: WS/R > RTT + S/R: ACK for first segment
in window before window’s worth of data sent

0 Case 2: WS/R < RTT + S/R: wait for ACK after
sending window’s worth of data sent

37

Effects of TCP latencies (cont.)

initiate TCF
comnection

request ~
cject —® [
request PR

initiate TCP
connection ———
} RIT e
. e RTT
) e SIR. object "'M”M‘T%W_%.%Mw_
T T
ot L gy | WER Wi
L T et RTT

1atack
returns

Istack
returns

fime

time

H v

at client

time v A . at server

af server

Case 1: latency = 2RTT + O/R Case 2: latency = 2RTT + O/R
+ (K-1)[S/R + RTT - WS/R]
K = O/(WS) (number of windows
to transmit object)
38

19

Transport layer: Summary

0 Principles behind transport
layer services:
0 Multiplexing/demultiplexing Next:
0 Reliable data transfer 0 Leaving the network
1 Flow control “edge” (application

. [
0 Congestion control transport layer) N ,
L 0 Into the network “core
0 Instantiation and

implementation in the Internet
o UDP
o TCP

'’

39

20

