
1

1

TCP congestion control:
❒ “Probing” for usable

bandwidth:
❍ Ideally: transmit as fast as

possible (cwnd as large as
possible) without loss

❍ Increase cwnd until loss
(congestion)

❍ Loss: decrease cwnd, then
begin probing (increasing)
again

2

TCP congestion control: Additive increase,
multiplicative decrease

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion
window

❒ Approach: Increase transmission rate (window size),
probing for usable bandwidth, until loss occurs
❍ Additive increase: Increase cwnd by 1 MSS every

RTT until loss detected
❍ Multiplicative decrease: Cut cwnd in half after loss

timeco
ng

es
tio

n
w

in
do

w
 s

iz
e

Saw tooth
behavior: probing

for bandwidth

2

3

TCP congestion control: Details

❒ Sender limits transmission:
LastByteSent-LastByteAcked

≤ cwnd

❒ Roughly,

❒ Cwnd is dynamic, function of
perceived network congestion

How does sender
perceive congestion?

❒ Loss event = timeout or
3 duplicate acks

❒ TCP sender reduces
rate (cwnd) after loss
event

Three mechanisms:
❍ AIMD
❍ Slow start
❍ Conservative after

timeout events

rate = cwnd
RTT Bytes/sec

4

TCP slow start

❒ How do we get the clocking behavior to start?
❍ Initialize cwnd = 1 MSS (typically 1460 bytes)
❍ Upon receipt of every ack, cwnd = cwnd + 1 MSS

❒ Implications
❍ Window actually increases to W in RTT * log2(W)
❍ Exponential increase up to first loss event
❍ Can overshoot window and cause packet loss

❒ Summary: initial rate is slow but ramps up
exponentially fast

3

5

Slow start example

1

One RTT

One pkt time

0R

2
1R

3

4
2R

5
6
7

8
3R

9
10
11

12
13

14
15

1

2 3

4 5 6 7

6

Slow start example (cont.)

one segment

RT
T

Host A Host B

time

two segments

four segments

4

7

Slow start sequence number plot

Time

Sequence No

.

.

.

8

Congestion window

Time

Congestion
Window

5

9

Congestion avoidance

❒ When reaching threshhold (ssthresh) go from
slow start to congestion avoidance

❒ Upon receiving ACK
❍ Increase cwnd by MSS/cwnd
❍ Results in additive increase

❒ Loss implies congestion – why?
❍ Not necessarily true on all link types

10

Congestion avoidance sequence plot

Time

Sequence No

6

11

Return to slow start

❒ If packet is lost we lose our self clocking as well
❍ Need to implement slow-start and congestion avoidance

together

12

Congestion window

Time

Congestion
Window

7

13

Return to slow start (cont.)

❒ If packet is lost we lose our self clocking as well
❍ Need to implement slow-start and congestion avoidance

together

❒ When loss occurs set
❍ ssthresh to 0.5 w
❍ cwnd to 1MSS (TCP-Tahoe)

14

Overall TCP behavior

Time

Window

8

15

TCP congestion control: Summary
❒ Two “phases”

❍ Slow start
❍ Congestion avoidance

❒ Important variables:
❍ Cwnd
❍ Threshold: defines

threshold between two slow
start phase, congestion
control phase

❒ “Probing” for usable
bandwidth:

❍ Ideally: transmit as fast as
possible (cwnd as large as
possible) without loss

❍ Increase cwnd until loss
(congestion)

❍ Loss: decrease cwnd, then
begin probing (increasing)
again

16

TCP slow start

❒ Exponential increase (per RTT)
in window size (not so slow!)

❒ Loss event: timeout and/or or
three duplicate ACKs

initialize: cwnd = 1MSS
for (each segment ACKed)
cwnd += 1 MSS
until (loss event OR
cwnd > threshold)

Slowstart algorithm
one segment

RT
T

Host A Host B

time

two segments

four segments

9

17

TCP congestion avoidance

/* slowstart is over */
/* cwnd > threshold */
Until (loss event) {
every w segments ACKed:
cwnd += 1 MSS
}

threshold = cwnd /2
cwnd = 1 MSS
perform slow start

Congestion avoidance

1

1: TCP Reno skips slowstart (fast
recovery) after three duplicate ACKs

18

TCP flavors

❒ Tahoe, Reno, Vegas, SACK
❒ TCP Tahoe (distributed with 4.3BSD Unix)

❍ Original implementation of Van Jacobson’s mechanisms
❍ Includes:

• Slow start
• Congestion avoidance
• Fast retransmit

10

19

Fast retransmit
❒ What are duplicate acks (dupacks)?

❍ Repeated acks for the same sequence
❒ When can duplicate acks occur?

❍ Loss
❍ Packet re-ordering
❍ Window update – advertisement of new flow control window

❒ Assume re-ordering is infrequent and not of large
magnitude

❍ Use receipt of 3 or more duplicate acks as indication of loss
❍ Don’t wait for timeout to retransmit packet

20

Fast retransmit

Time

Sequence No Duplicate Acks

Retransmission
X

11

21

TCP Reno (1990)
❒ All mechanisms in Tahoe
❒ Addition of fast-recovery

❍ Opening up congestion window after fast retransmit

❒ Delayed acks
❒ Header prediction

❍ Implementation designed to improve performance
❍ Has common case code inlined

❒ With multiple losses, Reno typically timeouts because it
does not see duplicate acknowledgements

22

Fast recovery

❒ Skip slow start. On 3 dup ack event:
❍ ssthresh <- 0.5 cwnd
❍ cwdn <- sstresh

❒ Each duplicate ack notifies sender that
single packet has cleared network

❒ When < cwnd packets are outstanding
❍ Allow new packets out with each new duplicate

acknowledgement

12

23

Fast recovery

Time

Sequence No
Sent for each dupack after

W/2 dupacks arrive
X

24

TCP sender congestion control
(Reno)

SS or CA

SS or CA

SS or CA

Congestion
Avoidance
(CA)

Slow Start
(SS)

State

cwnd and Threshold not
changed

Increment duplicate ACK count
for segment being acked

Duplicate
ACK

Enter slow startThreshold = cwnd /2,
cwnd = 1 MSS,
Set state to “Slow Start”

Timeout

Fast recovery,
implementing multiplicative
decrease. cwnd will not
drop below 1 MSS.

Threshold = cwnd /2,
cwnd = Threshold,
Set state to “Congestion
Avoidance”

Loss event
detected by
triple
duplicate
ACK

Additive increase, resulting
in increase of cwnd by 1
MSS every RTT

cwnd = cwnd +MSS / (cwnd)ACK receipt
for previously
unacked
data

Resulting in a doubling of
cwnd every RTT

cwnd = cwnd + MSS,
If (cwnd > Threshold)

set state to “Congestion
Avoidance”

ACK receipt
for previously
unacked
data

CommentaryTCP Sender Action Event

13

25

Multiple losses

Time

Sequence No Duplicate Acks

Retransmission
X

X

XX
Now what?

26

Time

Sequence No
X

X

XX

Tahoe

14

27

Reno

Time

Sequence No
X

X

XX

Now what? timeout

28

NewReno

❒ The ack that arrives after retransmission (partial
ack) should indicate that a second loss occurred

❒ When does NewReno timeout?
❍ When there are fewer than three dupacks for first loss
❍ When partial ack is lost

❒ How fast does it recover losses?
❍ One per RTT

15

29

NewReno

Time

Sequence No
X

X

XX

Now what? partial ack
recovery

30

SACK

❒ Basic problem is that cumulative acks only provide
little information
❍ Ack for just the packet received

• What if acks are lost? carry cumulative also
• Not used

❍ Bitmask of packets received
• Selective acknowledgement (SACK)

❒ How to deal with reordering

16

31

SACK (cont.)

Time

Sequence No
X

X

XX

Now what? – send
retransmissions as soon
as detected

32

Performance issues
❒ Timeout >> fast rexmit

❍ Need 3 dupacks/sacks
❍ Not great for small transfers

• Don’t have 3 packets outstanding
❍ What are real loss patterns like?

❒ Right edge recovery
❍ Allow packets to be sent on arrival of first and second

duplicate ack
❍ Helps recovery for small windows

❒ How to deal with reordering?

17

33

TCP extensions

❒ Implemented using TCP options
❍ Timestamp
❍ Protection from sequence number wraparound
❍ Large windows

34

Protection from wraparound

❒ Wraparound time vs. link speed
• 1.5Mbps: 6.4 hours
• 10Mbps: 57 minutes
• 45Mbps: 13 minutes
• 100Mbps: 6 minutes
• 622Mbps: 55 seconds < MSL!
• 1.2Gbps: 28 seconds

❒ Use timestamp to distinguish sequence number
wraparound

18

35

Large windows

❒ Delay-bandwidth product for 100 ms delay
• 1.5 Mbps: 18 KB
• 10 Mbps: 122KB > max 16bit window
• 45 Mbps: 549KB
• 100Mbps: 1.2 MB
• 622Mbps: 7.4 MB
• 1.2 Gbps: 14.8MB

❒ Scaling factor on advertised window
❍ Specifies how many bits window must be

shifted to the left
❍ Scaling factor exchanged during connection

setup

36

Maximum segment size (MSS)

❒ Exchanged at connection setup
❍ Typically pick MTU of local link

❒ What all does this effect?
❍ Efficiency
❍ Congestion control
❍ Retransmission

❒ Path MTU discovery
❍ Why should MTU match MSS?

19

37

Effects of TCP latencies

Q: client latency for object
request from WWW
server to receipt?

❒ TCP connection
establishment

❒ Data transfer delay

Notation, assumptions:
❒ Assume: fixed congestion

window, W, giving
throughput of R bps

❒ S: MSS (bits)
❒ O: object/file size (bits)
❒ No retransmissions (no loss,

no corruption)

Two cases to consider:
❒ Case 1: WS/R > RTT + S/R: ACK for first segment

in window before window’s worth of data sent
❒ Case 2: WS/R < RTT + S/R: wait for ACK after

sending window’s worth of data sent

38

Effects of TCP latencies (cont.)

Case 1: latency = 2RTT + O/R Case 2: latency = 2RTT + O/R
+ (K-1)[S/R + RTT - WS/R]

K = O/(WS) (number of windows
to transmit object)

20

39

Transport layer: Summary

❒ Principles behind transport
layer services:

❍ Multiplexing/demultiplexing
❍ Reliable data transfer
❍ Flow control
❍ Congestion control

❒ Instantiation and
implementation in the Internet

❍ UDP
❍ TCP

Next:
❒ Leaving the network

“edge” (application
transport layer)

❒ Into the network “core”

