Walking through the Cloud: Routing of Virtualized Network Functions

Klaus-Tycho Foerster Mahmoud Parham Stefan Schmid

Department of Computer Science
Aalborg University, Denmark

ALGO CLOUD, 2017
A Routing Problem
A Routing Problem
the usual routing
A Routing Problem
new: middleboxes

- Middlebox: Firewall, NAT, proxies, DPI etc.
A Routing Problem
moving to clouds

- VNFs brings flexibility, are cheaper
A Routing Problem
moving to clouds

- VNFs brings flexibility, are cheaper
- A lot of them, in clouds
A Routing Problem

The waypoints

- The task: find the shortest S–T walk through waypoints
- Capacities must be respected
A Routing Problem
the network

- Real Networks Are Bidirected
A Routing Problem
in two flavors

- Real Networks Are Bidirected
- Two Flavors: Ordered vs Unordered
Outline

1. Motivation
2. Model
3. Warm up
4. Hardness
5. Another Variant
Bidirected graph $G(V, E)$: $\forall (x, y) \in E \implies (y, x) \in E$

- n nodes, k of which are waypoints
- Arbitrary capacities, unit demand for (S, T)
Model

- Bidirected graph $G(V, E)$: $\forall (x, y) \in E \implies (y, x) \in E$
- n nodes, k of which are waypoints
- Arbitrary capacities, unit demand for (S, T)
- The shortest feasible $S-T$ walk visiting all waypoints
- A feasible walk respects link capacities
Model

- Bidirected graph \(G(V, E) \): \(\forall (x, y) \in E \implies (y, x) \in E \)
- \(n \) nodes, \(k \) of which are waypoints
- Arbitrary capacities, unit demand for \((S, T)\)
- The shortest feasible \(S-T \) walk visiting all waypoints
- A feasible walk respects link capacities
- Ordered and Unordered
Outline

1. Motivation
2. Model
3. Warm up
4. Hardness
5. Another Variant
One waypoint: greedy is optimal

Two shortest paths?
One waypoint: greedy is optimal

Assume both shortest paths chose \((X, Y)\)
One waypoint: greedy is optimal

\[P_1 P_2 P_3 P_4 \text{ is shorter} \implies \text{Contradiction!} \]
More waypoints

✓ The optimal order $+ \text{ shortest paths} \implies \text{it works!}$
More waypoints

- The optimal order + shortest paths \implies it works!
- Try all permutations: $SW_1 W_2 T$ or $SW_2 W_1 T$?
More waypoints

- The optimal order + shortest paths \implies it works!
- Try all permutations: SW_1W_2T or SW_2W_1T?
More waypoints

✓ The optimal order + shortest paths \implies it works!
✓ Try all permutations: SW_1W_2T or SW_2W_1T?
More waypoints

- The optimal order + shortest paths → it works!
- Try all permutations: $SW_1 W_2 T$ or $SW_2 W_1 T$?
- Polynomial time for $k = \mathcal{O} \left(\frac{\log n}{\log \log n} \right)$
Outline

1. Motivation
2. Model
3. Warm up
4. Hardness
5. Another Variant
Hardness

- Feasibility via spanning tree \(\implies \) always feasible

Figure: Bidirected
Hardness

- Feasibility via spanning tree \implies always feasible

Figure: Bidirected

Figure: Undirected
Hardness

- Feasibility via spanning tree \implies always feasible

Figure: Bidirected

Figure: Undirected

Figure: Spanning Tree
Hardness

Feasibility via spanning tree \implies always feasible
Feasibility via spanning tree \implies always feasible

Figure: Bidirected

Figure: Undirected

Figure: Spanning Tree

Figure: S-T tour
Hardness

- Feasibility via spanning tree \implies always feasible
- Approximation via metric TSP \implies L: $\approx 1.008^1$, U: $\approx 1.53^2$

2András Sebo and Anke van Zuylen, FOCS 2016
Hardness

- Feasibility via spanning tree \implies always feasible
- Approximation via metric TSP \implies L: $\approx 1.008^1$, U: $\approx 1.53^2$
- FPT via subset TSP $\implies 2^k \cdot n^{O(1)}$ (Klein and Marx, 2014)

2. András Sebő and Anke van Zuylen, FOCS 2016
Outline

1. Motivation
2. Model
3. Warm up
4. Hardness
5. Another Variant
Ordered waypoint routing
The problem

- A permutation is given, e.g. $w_1w_2\ldots w_k$
- Find the shortest route visiting every w_i, satisfying the permutation
Ordered waypoint routing
The problem

- A permutation is given, e.g. $w_1 w_2 \ldots w_k$
- Find the shortest route visiting every w_i, satisfying the permutation
- Not always feasible

Not feasible!
Ordered waypoint routing

The problem

- A permutation is given, e.g. $w_1w_2\ldots w_k$
- Find the shortest route visiting every w_i, satisfying the permutation
- Not always feasible
- Related to Edge Disjoint Path Problem
Ordered waypoint routing
The problem

- A permutation is given, e.g. $w_1w_2...w_k$
- Find the shortest route visiting every w_i, satisfying the permutation
- Not always feasible
- Related to Edge Disjoint Path Problem
- NP-Hardness and feasibility via EDPP
Edge Disjoint Path Problem

Find a set of pairwise edge-disjoint paths connecting every pair \((s_i, t_i), i = 1 \ldots k\)
Building the OWRP instance

The waypoints:
$s_1, t_1 ... s_i, t_i, s_{i+1}, t_{i+1} ... s_k, t_k$
Building the OWRP instance

The waypoints:

$$S = s_1, t_1, s_i, t_i, s_{i+1}, t_{i+1}, s_k, t_k = T$$
Reduction
from EDPP

Building the OWRP instance

The waypoints:
\[S = s_1, t_1 \ldots s_i, t_i, s_{i+1}, t_{i+1} \ldots s_k, t_k = T \]
Reduction from EDPP

Building the OWRP instance

The waypoints:
\[S = s_1, t_1, \ldots, s_i, t_i, w_i, s_{i+1}, t_{i+1}, \ldots, s_k, t_k = T \]
Reduction
from EDPP

Building the OWRP instance

The waypoints:
\[S = s_1, t_1 \ldots s_i, t_i, w_i, s_{i+1}, t_{i+1} \ldots s_k, t_k = T \]
Building the OWRP instance

The waypoints:
\[S = s_1, t_1 ... s_i, t_i, w_i, s_i+1, t_i+1 ... s_k, t_k = T \]
Building the OWRP instance

The waypoints:
\[S = s_1, t_1 ... s_i, t_i, w_i, s_{i+1}, t_{i+1} ... s_k, t_k = T \]

- Set \(\lambda \) large enough
Reduction from EDPP

Building the OWRP instance

The waypoints:
\[S = s_1, t_1 \ldots s_i, t_i, w_i, s_{i+1}, t_{i+1} \ldots s_k, t_k = T \]

- Set \(\lambda \) large enough
- OWRP chooses a backward edge \(\iff \) EDPP is not feasible
Ordered waypoint routing

Results

- General graphs: $k \in \mathcal{O}(1) \implies$ feasibility $\in \mathcal{P}$, via EDPP (A. Jarry et al., 2009)
Ordered waypoint routing
Results

- General graphs: $k \in \mathcal{O}(1) \implies$ feasibility $\in \mathbb{P}$, via EDPP (A. Jarry et al., 2009)
- Trivial on trees
Ordered waypoint routing

Results

- General graphs: $k \in \mathcal{O}(1) \implies$ feasibility $\in \mathbb{P}$, via EDPP (A. Jarry et al., 2009)

- Trivial on trees

- On ring: $\min_e c_e \in \mathcal{O}(1) \implies$ dynamic programming $\in \mathbb{P}$
Ordered waypoint routing

Results

- General graphs: $k \in \mathcal{O}(1) \implies$ feasibility $\in P$, via EDPP (A. Jarry et al., 2009)

- Trivial on trees

- On ring: $\min_e c_e \in \mathcal{O}(1) \implies$ dynamic programming $\in P$

- Cactus graph: tree of rings
Ordered waypoint routing
Cactus: a tree of rings

Step 1: solve the tree contraction given
\((S = R_1), R_2, R_3, W_7, (R_1 = T)\)
Ordered waypoint routing
Cactus: a tree of rings

Step 1: solve the tree contraction given
\[(S = R_1), R_2, R_3, W_7, (R_1 = T)\]
Ordered waypoint routing
Cactus: a tree of rings

Step 2: mark the port nodes (shown in back) as new waypoints
Ordered waypoint routing
Cactus: a tree of rings

- Step 2: mark the port nodes (shown in back) as new waypoints
- Step 3: solve OWRP on each ring separately
Ordered waypoint routing
Cactus: a tree of rings

Step 2: mark the port nodes (shown in back) as new waypoints
Step 3: solve OWRP on each ring separately
Ordered waypoint routing
Cactus: a tree of rings
Ordered waypoint routing
Cactus: a tree of rings
Ordered waypoint routing
Cactus: a tree of rings

Step 2: mark the port nodes (shown in back) as new waypoints
Step 3: solve OWRP on each ring separately
Ordered waypoint routing
Cactus: a tree of rings

Step 2: mark the port nodes (shown in back) as new waypoints
Step 3: solve OWRP on each ring separately
Ordered waypoint routing

Cactus: a tree of rings

Step 2: mark the port nodes (shown in back) as new waypoints

Step 3: solve OWRP on each ring separately
Summary

Table: Ordered WRP

<table>
<thead>
<tr>
<th></th>
<th>General</th>
<th>(k \in \mathcal{O}(1))</th>
<th>Tree</th>
<th>(c_e \in \mathcal{O}(1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feasibility</td>
<td>open</td>
<td>P</td>
<td>P</td>
<td>Ring ∈ P</td>
</tr>
<tr>
<td>Optimality</td>
<td>NP-Hard</td>
<td>open</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table: Unordered WRP

<table>
<thead>
<tr>
<th></th>
<th>General</th>
<th>(k \in \mathcal{O}(\frac{\log n}{\log \log n}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feasibility</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Optimality</td>
<td>NPH, APX, FPT</td>
<td>P</td>
</tr>
</tbody>
</table>
Open Questions

- Other special graph classes, e.g.: bidirected planar graphs
- Feasibility hardness for the ordered variant (we gave the optimality hardness)