Concurrent Self-Adjusting Distributed Tree Networks

Bruna Peres
Olga Goussevskaia
Stefan Schmid
Chen Avin

UFMG
UNIVERSIDADE FEDERAL DE MINAS GERAIS

AALBORG UNIVERSITY
DENMARK
Motivation

• New technologies allow communication networks to be increasingly flexible and reconfigurable

• Traditional networks designs are still optimized toward static metrics
• ProjecToR: Agile Reconfigurable Data Center Interconnect. Ghobadi et al., SIGCOMM'16
Self-Adjusting Data Structures

• Self-adjusting networks ↔ self-adjusting data structures

• Splay Trees
S. Schmid, et al., SplayNet: Towards Locally Self-Adjusting Networks
IEEE/ACM Transactions on Networking, 2016.
SplayNets

• Distributed tree network

• Improves the communication cost between two nodes in a self-adjusting manner

• Nodes communicating more frequently become topologically closer to each other over time

• *Lowest common ancestor* $LCA(u,v)$: locality is preserved
Our Contributions

• While SplayNets are inherently intended to distributed applications, so far, only sequential algorithms are known to maintain SplayNets

• We present DiSplayNets, the first distributed and concurrent implementation of SplayNets
• Network model:
 • Binary tree T comprised of a set of n communication nodes

• Sequence of communication requests $\sigma = (\sigma_1, \sigma_2, ..., \sigma_m)$:
 • $\sigma_i = (s, d)$
 • $t_b(\sigma_i)$ and $t_e(\sigma_i)$

• Given $\sigma_i(s, d)$, s and d rotate in parallel towards the LCA(s,d)
 • LCA might change over time
DiSplayNet

- State machine executed by each node in parallel
State machine executed by each node in parallel
DiSplayNet

- State machine executed by each node in parallel
Local reconfigurations

Concurrent Self-Adjusting Distributed Tree Networks

DISC 2017

12
Local reconfigurations

\[\beta(u) \]

Diagram showing a zig-zig reconfiguration in a distributed tree network.
In order to ensure deadlock and starvation freedom, concurrent operations are performed according to a priority

\[t_b(\sigma_i(s_i, d_i)) < t_b(\sigma_j(s_j, d_j)) \]
The algorithm is executed in rounds

\[t_b(\sigma_i(s_i, d_i)) < t_b(\sigma_j(s_j, d_j)) \]
Algorithm

- The algorithm is executed in rounds

\[t_b(\sigma_i(s, d)) < t_b(\sigma_j(s, d)) \]
The algorithm is executed in rounds

\[t_b(\sigma_i(s_i, d_i)) < t_b(\sigma_j(s_j, d_j)) \]
Phase 4

- The algorithm is executed in rounds

\[t_b(\sigma_i(s_i, d_i)) < t_b(\sigma_j(s_j, d_j)) \]
• The algorithm is executed in rounds

\[t_b(\sigma_i(s_i, d_i)) < t_b(\sigma_j(s_j, d_j)) \]
• Self-adjust to the communication pattern in a fully-decentralized manner

 • Starvation free

 • Deadlock free
Future Work

• Analyze the efficiency

• Work cost: \(W(\text{DiSplayNet}, T_0, \sigma) = \sum_{\sigma_i \in \sigma} w(\sigma_i) \)

• Time cost:
 • Request delay: \(t_d(\sigma_i) = t_e(\sigma_i) - t_b(\sigma_i) \)
 • Makespan: \(T(T_0, \sigma) = \max_{\sigma_i \in \sigma} t_e(\sigma_i) - \min_{\sigma_i \in \sigma} t_b(\sigma_i) \)
Progress Matrix

\[t_i \]

\[t_{i+1} \]

\[t_{i+2} \]

\[t_{i+3} \]

\[t_{i+4} \]

\[
\begin{array}{cccccccccccc}
\text{ } & t_1 & t_2 & \ldots & t_i & t_{i+1} & t_{i+2} & t_{i+3} & t_{i+4} & t_{i+5} & \ldots & t_j & \ldots & t_k \\
s_1 & \checkmark & \checkmark & \ldots & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark & \ldots & - & \ldots & - \\
d_1 & \checkmark & \checkmark & \ldots & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark & \ldots & - & \ldots & - \\
s_2 & \checkmark & \checkmark & \ldots & \checkmark & \checkmark & \checkmark & \checkmark & - & - & \ldots & - & \ldots & - \\
d_2 & \checkmark & \checkmark & \ldots & \checkmark & \checkmark & X & \checkmark & - & - & \ldots & - & \ldots & - \\
s_3 & \checkmark & \checkmark & \ldots & X & X & X & X & \checkmark & \checkmark & \ldots & \checkmark & \ldots & - \\
d_3 & X & X & \ldots & X & X & X & X & X & \checkmark & \ldots & \checkmark & \ldots & - \\
\end{array}
\]
Progress Matrix

<table>
<thead>
<tr>
<th></th>
<th>t_1</th>
<th>t_2</th>
<th>\ldots</th>
<th>t_i</th>
<th>t_{i+1}</th>
<th>t_{i+2}</th>
<th>t_{i+3}</th>
<th>t_{i+4}</th>
<th>t_{i+5}</th>
<th>\ldots</th>
<th>t_j</th>
<th>\ldots</th>
<th>t_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>✓</td>
<td>✓</td>
<td>\ldots</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>\ldots</td>
<td>$-$</td>
<td>\ldots</td>
</tr>
<tr>
<td>d_1</td>
<td>✓</td>
<td>✓</td>
<td>\ldots</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>\ldots</td>
<td>$-$</td>
<td>\ldots</td>
<td>$-$</td>
</tr>
<tr>
<td>s_2</td>
<td>✓</td>
<td>✓</td>
<td>\ldots</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>\ldots</td>
<td>$-$</td>
<td>\ldots</td>
<td>$-$</td>
</tr>
<tr>
<td>d_2</td>
<td>✓</td>
<td>✓</td>
<td>\ldots</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>$-$</td>
<td>$-$</td>
<td>\ldots</td>
<td>$-$</td>
<td>\ldots</td>
</tr>
<tr>
<td>s_3</td>
<td>✓</td>
<td>✓</td>
<td>\ldots</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>✓</td>
<td>✓</td>
<td>\ldots</td>
<td>✓</td>
<td>\ldots</td>
</tr>
<tr>
<td>d_3</td>
<td>\times</td>
<td>\times</td>
<td>\ldots</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\ldots</td>
<td>✓</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

Makespan

The makespan is the duration of the longest path through the matrix, representing the time it takes for all tasks to be completed.

Work

The work is the total amount of tasks assigned to each time slot, indicating the load on the system at each time point.
Future Work

- Our simulations show first promising results
 - ProjecToR data
 - 128 node randomly selected from 2 production clusters (running a mix of workloads, including MapReduce-type jobs, index builders, and database and storage systems)
 - 1000 requests
 - Poisson process
Future Work

- Our simulations show first promising results
- Individual work CDF
Our simulations show first promising results

Total work

<table>
<thead>
<tr>
<th>Work</th>
<th>DisPlayNet</th>
<th>SplayNet</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu=5)</td>
<td>2254</td>
<td>2358</td>
</tr>
<tr>
<td>(\mu=7)</td>
<td>2229</td>
<td>2424</td>
</tr>
<tr>
<td>(\mu=10)</td>
<td>2380</td>
<td>2317</td>
</tr>
<tr>
<td>(\mu=15)</td>
<td>2345</td>
<td>2470</td>
</tr>
<tr>
<td>(\mu=20)</td>
<td>2258</td>
<td>2213</td>
</tr>
</tbody>
</table>
Future Work

• Our simulations show first promising results
 • Request delay
Future Work

- Our simulations show first promising results
 - Makespan

![Makespan Chart]

DISC 2017
Concurrent Self-Adjusting Distributed Tree Networks
Thank you

Bruna Peres
bperes@dcc.ufmg.br