Competitive and Fair Medium Access despite Reactive Jamming

ICDCS 2011

Andrea Richa (ASU)
Christian Scheideler (U of Paderborn)
Stefan Schmid (TU Berlin/T-Labs)
Jin Zhang (ASU)
Motivation

Channel availability hard to model:

- Background noise
- Temporary obstacles
- Mobility
- Co-existing networks
- Jammer
Motivation

Ideal world:

background noise

Usual approach adopted in theory.
Motivation

Real world:

How to model this???

background noise

: noise level

0

time
Our Approach: Adversarial Jamming

Idea: model unpredictable behaviors via adversary!

- Background noise (microwave etc.)
- Temporary obstacles (cars etc.)
- Mobility
- Co-existing networks …
Our Approach: Adversarial Jamming

Idea: model unpredictable behaviors via adversary!
Adversarial physical layer jamming

- a jammer listens to the open medium and broadcasts in the same frequency band as the network
 - no special hardware required
 - can lead to significant disruption of communication at low cost
Reactive adversary

- \((T,1-\varepsilon)\)-bounded adversary, \(0 < \varepsilon < 1\): in any time window of size \(w \geq T\), the adversary can jam \(\leq (1-\varepsilon)w\) time steps.
- Adaptive: knows protocol and entire history.
- Reactive: can use physical carrier sensing to make a jamming decision based on the actions of the nodes at the current step (much more powerful than non-reactive adversary!).

- | steps jammed by adversary |
- | other steps |

0 1 ... \(w\)
Reactive adversary

- \((T, 1-\varepsilon)\)-bounded adversary, \(0 < \varepsilon < 1\): in any time window of size \(w \geq T\), the adversary can jam \(\leq (1-\varepsilon)w\) time steps.
- Adaptive: knows protocol and entire history.
- Reactive: can use physical carrier sensing to make a jamming decision based on the actions of the nodes at the current step (much more powerful than non-reactive adversary!)

Diagram:
- Steps jammed by adversary
- Other steps
- Idle
Single-hop wireless network

- n reliable honest nodes and one jammer; all nodes within transmission range of each other and of the jammer
Wireless communication model

- at each time step, a node may decide to transmit a packet (nodes continuously contend to send packets)
- a node may transmit or sense the channel at any time step (half-duplex)
- when sensing the channel a node v may
 - sense an idle channel
 - receive a packet
 - sense a busy channel (cannot distinguish between message collisions and adversarial jamming)
Fairness

- the channel access probabilities among nodes do not differ by more than a small factor after the first message was sent successfully.
A protocol is called constant-competitive against a \((T,1-\varepsilon)\)-bounded adversary if the nodes manage to perform successful transmission in at least a constant fraction of the steps not jammed by the adversary, for any sufficiently large number of steps (w.h.p. or on expectation).
Our main contribution

- symmetric local-control MAC protocol, ANTIJAM, that is fair and constant competitive against any \((T, 1-\varepsilon)\)-bounded reactive adversary after sufficiently large number of time steps w.h.p., for any constant \(0 < \varepsilon < 1\), and any \(T\).
Related Work

- spread spectrum & frequency hopping:
 - rely on broad spectrum. However, sensor nodes or common wireless devices based on 802.11 have very narrow bandwidths.
 - Our approach is orthogonal to broad spectrum techniques, and can be used in conjunction with those.

- random backoff:
 - reactive adversary too powerful for MAC protocols based on random backoff or tournaments (including the standard MAC protocol of 802.11 [BKLNRT’08])

- jamming-resistant MAC for single-hop [ARS’08]:
 - can achieve constant throughput in single-hop wireless networks, only under adaptive but non-reactive adversary model; leads to unfair access probabilities
Simple idea

- each node v sends a message at current time step with probability $p_v \leq p_{\text{max}}$, for constant $0 < p_{\text{max}} \ll 1$.

$$p = \sum p_v \quad \text{(cumulative probability)}$$

$q_{\text{idle}} = \text{probability the channel is idle}$

$q_{\text{success}} = \text{probability that only one node is transmitting}$

(successful transmission)

- Claim. $q_{\text{idle}} \cdot p \leq q_{\text{success}} \leq (q_{\text{idle}} \cdot p)/(1 - p_{\text{max}})$

\[\therefore \] if (number of times the channel is idle) \approx (number of successful transmissions)

$p = \Theta(1)$!

(what we want!)
Basic approach

- a node v adapts p_v based only on steps when an idle channel or a successful message transmission are observed, ignoring all other steps (including all the blocked steps when the adversary transmits!)!
Basic approach

- A node v adapts p_v based only on steps when an idle channel or a successful message transmission are observed, ignoring all other steps (including all the blocked steps when the adversary transmits!)!
ANTIJAM Protocol

- each node \(v \) maintains
 - probability value \(p_v \),
 - time window threshold \(T_v \)
 - counter \(c_v \), and
 - \(\gamma = O(1/(\log T + \log\log n))) \)

- Initially, \(T_v = c_v = 1 \) and \(p_v = p_{max} (< 1/24) \).
- synchronized time steps (for ease of explanation)
ANTIJAM Protocol

In each step:

• node v sends a message along with a tuple (p_v, c_v, T_v) with probability p_v. If v decides not to send a message then
 – if v senses an idle channel, then $p_v = \min\{(1 + \gamma)p_v, p_{\text{max}}\}$ and $T_v = \max\{T_v - 1, 1\}$
 – if v successfully receives a message along with the tuple of $(p_{\text{new}}, c_{\text{new}}, T_{\text{new}})$, then $p_v = p_{\text{new}}/(1 + \gamma)$, $c_v = c_{\text{new}}$, and $T_v = T_{\text{new}}$

• $c_v = c_v + 1$. If $c_v > T_v$ then
 – $c_v = 1$
 – if v did not sense an idle channel in the last T_v steps then $p_v = p_v/(1 + \gamma)$ and $T_v = T_v + 2$
ANTIJAM Protocol

In each step:

- node v sends a message along with a tuple (p_v, c_v, T_v) with probability p_v. If v decides not to send a message then
 - if v senses an idle channel, then $p_v = \min\{(1 + \gamma)p_v, p_{\max}\}$ and $T_v = \max\{T_v - 1, 1\}$
 - if v successfully receives a message along with the tuple of $(p_{\text{new}}, c_{\text{new}}, T_{\text{new}})$, then $p_v = p_{\text{new}}/(1 + \gamma)$, $c_v = c_{\text{new}}$, and $T_v = T_{\text{new}}$

- $c_v = c_v + 1$. If $c_v > T_v$ then
 - $c_v = 1$
 - if v did not sense an idle channel in the last T_v steps then $p_v = p_v/(1 + \gamma)$ and $T_v = T_v + 2$
Our results

- Let \(N = \max \{T,n\} \)
- **Theorem.** The ANTIJAM protocol can achieve:

1. **fairness:** the channel access probabilities among nodes do not differ by more than a factor of \((1 + \gamma)\) after the first message was sent successfully.

2. \(e^{-\theta(1/\varepsilon^2)}\) - **competitiveness** w.h.p., under any \((T,1-\varepsilon)\)-bounded reactive adversary if the protocol is executed for \(\Theta\left(\frac{1}{\varepsilon} \log N \max\{T, (e^{\delta/\varepsilon^2}/\varepsilon\gamma^2)\log^3 N\}\right)\) steps, where \(\varepsilon \in (0,1)\) is a constant, \(\gamma = O\left(1/(\log T + \log\log n)\right)\), and \(\delta\) is a sufficiently large constant.
Proof sketch: Fairness

- Fact:
 - Right after u sends a message successfully along with the tuple (p_u, c_u, T_u), $(p_v, c_v, T_v) = (p_u/(1+\gamma), c_u, T_u)$ for all receiving nodes v, while the sending node values stay the same. In particular, for any time step t after a successful transmission by node u, $(c_v, T_v) = (c_w, T_w)$ for all nodes v and $w \in V$.

 - This implies that after a successful transmission, the access probabilities of any two nodes in the network will never differ by more than a factor $(1 + \gamma)$ in the future.
Proof sketch: Constant Competitiveness

- We study the competitiveness of the protocol for

\[F = \frac{1}{\varepsilon} \log N \max\{T, (e^{\delta / \varepsilon^2} / \varepsilon^2) \log^3 N\} \] many steps

If we can show constant competitiveness for any such \(F \), the theorem follows

- Use induction over sufficiently large time frames:

\[f = \max\{T, (e^{\delta / \varepsilon^2} / \varepsilon^2) \log^3 N\} \]

\[F = \theta(\log N / \varepsilon) \cdot f \]
Proof sketch: Constant Competitiveness

• First, show that constant competitive can be achieved w.h.p., when cumulative probability $p_t \leq \delta/\varepsilon^2$ for at least half of the non-jammed time steps t in a subframe l'.

• Second, show that at most half of the non-jammed time steps t in a subframe l' can have the property that $p_t > \delta/\varepsilon^2$, w.h.p.

• Then follow the same line as in [ARS’08], show that ANTIJAM is self-stabilizing.
Experiment 1: Constant competitiveness
Experiment 2: Convergence time

![Graph showing convergence time with cumulative probability on a logarithmic scale against number of rounds. Two lines are plotted: one for $p_{\text{max}} = 1/24$ with a dotted blue line, and another for $p_{\text{max}} = 1/2$ with a solid red line. The x-axis represents the number of rounds from 0 to 10,000, while the y-axis represents the cumulative probability on a logarithmic scale ranging from 10^{-1} to 10^3. The graph illustrates how the convergence time changes with different values of p_{max}.](image)
Experiment 3: Fairness

![Graph showing the number of successful transmissions versus the number of nodes, with a peak at 60 nodes, and a label indicating $p_{max} = 1/24$.](image-url)
Experiment 4: Fairness (ANTIJAM vs. [ARS’08])

ANTIJAM Protocol
Experiment 5: **ANTIJAM vs. 802.11**
Future Work

• Can ANTIJAM perform well in physical interference model, i.e., SINR?

\[\frac{P_v(u)}{N + \sum_{w \in S} P_v(w)} \geq \beta \]

• Closing gaps in terms of \(\varepsilon \).
 • \(e^{-\theta(1/\varepsilon^2)} \) - competitiveness
Questions?