
Chronus: Consistent Data Plane Updates
in Timed SDNs

Jiaqi Zheng∗§, Guihai Chen∗†, Stefan Schmid‡, Haipeng Dai∗, Jie Wu§,
∗State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210024, China

†Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University, Shanghai 200240, China
‡Department of Computer Science, Aalborg University, Denmark

§Department of Computer and Information Sciences, Temple University, USA

Abstract—Software-Defined Networks (SDNs) introduce in-
teresting new opportunities in how network routes can be
defined, verified, and changed over time. Yet despite the logically-
centralized perspective offered, an SDN still needs to be consid-
ered a distributed system: rule updates communicated from the
controller to the individual switches traverse an asynchronous
network and may arrive out-of-order, and hence lead to (tempo-
rary or permanent) inconsistencies. Accordingly, the consistent
network update problem has recently received much attention.
Motivated by the advent of tightly synchronized SDNs, we
in this paper initiate the study of algorithms for consistent
network updates in “timed SDNs”—SDNs in which individual
node updates can be scheduled at specific times.

This paper presents Chronus, which is based on provably
congestion- and loop-free update scheduling algorithms, and
avoids the flow table space headroom required by existing two-
phase update approaches. We formulate the Minimum Update
Time Problem (MUTP) as an optimization program. We propose
a tree algorithm to check the feasibility and a greedy algorithm to
find a update sequence in polynomial time. Extensive experiments
on Mininet and numerical simulations show that Chronus can
substantially reduce transient congestion by 75% and save over
60% of the rules compared to the state of the art.

Index Terms—SDN, network updates, clock synchronization,
congestion-free, loop-free.

I. INTRODUCTION

By decoupling and outsourcing the control over switches
to a logically centralized server, Software-Defined Networks
(SDNs) introduce interesting new flexibilities. In an SDN,
the control plane can evolve independently of the data plane,
enabling faster innovations. SDNs also introduce flexibilities
in terms of traffic engineering, efficient failover, and network
virtualization. In addition to the introduced flexibilities, the
logically centralized perspective and the OpenFlow match-
action paradigm enable formal verifiability. In principle, net-
work policies can be specified and verified in an automatic
manner [10].

However, SDNs also introduce new challenges. Despite
the centralization of the control plane, an SDN needs to be
regarded as a distributed system. In particular, the communi-
cation between the controller(s) and the switches occurs over
a network: the times and orders in which update commands
sent by the controller arrive and take effect at the different
switches may be hard to predict. If no care is taken, such an
out-of-order arrival could cause various inconsistencies, not
only in terms of forwarding correctness, but also in terms of

performance and security (policy compliance). For example,
the fact that network updates do not occur atomically [20]
in the data plane and a high degree of congestion may be
introduced during the update, which would inevitably lead to
packet loss and poor performance [7], [13].

This is problematic, as network updates are of increasing
importance and are expected to happen more frequently in
more flexible software-defined networks [5]. There are several
reasons for this: (1) changes in security policies [14] (e.g.,
traffic from one subnetwork may have to be rerouted via
a firewall before entering another subnetwork); (2) traffic
engineering in the network [8] (to minimize the maximal link
load, an operator may decide to reroute parts of the traffic
along different links); (3) network maintenance work [12], [13]
(e.g., in order to replace a faulty router, it may be necessary to
temporarily reroute traffic); (4) reaction to link failures [24]
(e.g., fast network update mechanisms are required to react
quickly to link failures and determine a failover path).

For these reasons, the problem of consistent network up-
dates has received much attention in recent years. Existing
network update algorithms can roughly be classified into
two categories: (1) two-phase update protocols and (2) node
ordering protocols. Oversimplifying things slightly, the former
approaches have the advantage that they are simple and
relatively fast, however, they come with the drawback that
they require packet tagging, which implies overheads in terms
of additional forwarding rules to match these tags (additional
flow table space headroom) and which causes problems in
the presence of middleboxes [22]. The latter approaches have
the advantage that they do not require packet tagging, but it
has been shown that the corresponding scheduling algorithms
come with strict tradeoffs in terms of the levels of transient
consistency they provide and update time.

A. Our Contributions

In this paper we initiate the algorithmic study of a promising
new approach to update networks consistently, which has the
potential to overcome the drawbacks of the two approaches
above. Our work is motivated by the advent of systems such
as Time4 [16], [18] which promise a more predictable and
synchronous data plane, allowing the coordination of network
updates using accurate time, in the order of microseconds [17].
We introduce a natural and new optimization problem for

timed SDNs as we aim to find a network update schedule
which minimizes the overall network update time, while en-
suring loop-freedom and congestion-freedom at any moment
in time. More specifically, this paper makes the following
contributions:

1) Problem formulation: We introduce a novel problem
motivated by the advent of more synchronous networks:
we ask for accurate time schedules—specifying update
time points for each switch—such that the total update
time is minimized and congestion- and loop-freedom
are ensured at any moment in time. We formulate this
problem as an optimization program.

2) Chronus and algorithms: Our second contribution is
Chronus, a system and set of algorithms for solving
MUTP. Chronus does not require additional forwarding
rules during the update and hence can be effectively
applied to scenarios where the flow table space is limited.
We first propose a tree algorithm to check the existence
of a feasible congestion- and loop-free update sequence
in polynomial time. Furthermore, based on the time-
extended network model, we propose a fast greedy al-
gorithm to tackle MUTP.

3) Evaluation: Our third contribution is a concrete im-
plementation and evaluation of Chronus. In particular,
we develop a prototype of Chronus on Mininet using
a Floodlight controller. Extensive experiments and nu-
merical simulations show that Chronus can substantially
reduce transient congestion by 75% and save over 60%
of the forwarding rules compared to the state of the art.

II. AN OPTIMIZATION FRAMEWORK

A. A Motivating Example

We consider a Software-Defined Network (SDN) where a
controller updates the forwarding rules at the switches when-
ever a route changes. Fig. 1(a) illustrates a simple example:
there are six switches v1, . . . , v6 and the link capacity is one
unit. The transmission delay of each link is assumed to be
one time unit in this example. That is, if one unit of flow
leaves switch u at time t on the link 〈u, v〉, one unit of
flow arrives at switch v at time t + 1. The demand of the
“dynamic flow” is one unit, which is routed from the source
v1 to the destination v6. The initial routing is depicted as a
solid line and the final routing is depicted as a dashed line.
The notion of dynamic flow used in this paper is inspired
by [6]. In a dynamic flow, the utilization of a link varies over
time. Going back to our example in Fig. 1(b), assume we first
only update v2: hence, the subsequent flow is routed directly
to v6 through the link 〈v2, v6〉. Note that at this point, due
to the link propagation delay, the old flow is still on the path
〈v2, v3, v4, v5, v6〉 and will arrive at v6 after four time units.
Before that, the congestion will happen if we route new flow
on this path.

Prior work on the network update problem usually relies
on one of two fundamental update techniques: two-phase
updates [20] and order replacement updates [9], [15].

TABLE I
KEY NOTATIONS IN THIS PAPER.

F The set of dynamic flow f
V The set of switches v
E The set of links 〈u, v〉
G The directed network graph G = (V, E)
ti The time point. ti+1 > ti
T The set of time point. T = {t0, t1, . . . , tn}
FT The set of flows in the time-extended network
VT The set of switches v(t), where v ∈ V and t ∈ T
ET The set of links 〈u(ti), v(tj)〉
GT The time-extended network GT = (VT , ET)
Cu,v The capacity of link 〈u, v〉
P (f) The set of possible path in the time-extended network
pinit The initial path for the dynamic flow f
pfin The final path for the dynamic flow f
d The demand of the dynamic flow f
n The number of the switches. n = |V|

σu,v The transmission delay for the link 〈u, v〉.
Ot The dependency relation set at t, where t ∈ T .

A possible order replacement update sequence is shown in
Fig. 1(b) → (c) → (d). In the first round, v2 is updated. Then
v3, v4 and v5 are updated and finally v1 is updated in the last
round. In the second round, due to the asynchronous nature
of the data plane, the new routing configuration for v4 may
become functional earlier than that for v3. Thus a transient
forwarding loop occurs since the flow passing through v4 will
be routed back to v3 and then again arrive at v4. Similarly, if
the new routing configuration for v5 is functional earlier than
that for v3 and v4, the old flow on the path 〈v2, v3, v4, v5〉
will pass through the link 〈v2, v6〉 from 〈v5, v2〉. Note that v1
is already updated in the first round and the new flow from
v1 will pass through 〈v2, v6〉. Here the new flow and the old
flow together will result in a transient congestion on the link
〈v2, v6〉 as the sum of flow demand is two units, which are
beyond the one unit link capacity. As for two-phase updates,
it doubles the number of forwarding rules during the update
and hence cannot be applied to scenarios where the flow table
space is limited.

The timed updates can effectively solve this problem.
Fig. 1(e)→ (f)→ (g)→ (h) shows a congestion- and loop-free
timed update sequence. Switch v2 is updated at t0. And then
v3 is updated at t1. Next v1 and v4 are updated simultaneously
at t2. Finally, v5 is updated at t3. The congestion- and loop-
free conditions are ensured at any moment in time as shown
in Fig. 2(d). This timed update plan can be acceptable in
practice because the updates can be scheduled accurately on
the order of one microsecond [17]. In addition, we only
modify the action in the flow table during the update process,
which cannot incur additional flow table space headroom and
overcome the drawback of two-phase updates.

B. Dynamic Flow Model And Problem Formulation

Before formulating the problem, we first present our net-
work model. A network is a directed graph G = (V, E), where
V is the set of switches and E the set of links with capacities

v1 v2 v3 v4 v5 v6

Initial path and final path

v1 v2 v3 v4 v5 v6 v1 v2 v3 v4 v5 v6 v1 v2 v3 v4 v5 v6

Round 1 Round 2 Round 3

v1 v2 v3 v4 v5 v6

Time t0

v1 v2 v3 v4 v5 v6 v1 v2 v3 v4 v5 v6 v1 v2 v3 v4 v5 v6

Time t1 (t1=t0+1) Time t2 (t2=t1+1) Time t3 (t3=t2+1)

Fig. 1. Illustration of the network update problem considered in this paper. In this example topology, v1 is the source and v6 is the destination of both the
old (initial) route and the new route. The initial routing is illustrated as a solid line, while the final routing is represented as a dashed line. The red solid and
dashed links represent that the load on the link is greater than zero, which indicates that the dynamic flow is passing through this link. The black solid and
dashed links represent the load on the link is zero. In our example, the link capacity and the link propagation delay is assumed to be one unit. The order
replacement update sequence is: Fig. 1(b) → (c) → (d), while a congestion- and loop-free timed update sequence is: Fig. 1(e) → (f) → (g) → (h).

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

t0 t1 t2 t3

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

t4 t5

v6 v6 v6 v6 v6 v6

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v6 v6 v6 v6

t-4 t-3 t-2 t-1

(a) If all the switches are updated at t0, there would be three forwarding
loops: 〈v2(t−1), v3(t0)), v5(t1), v2(t2)〉, 〈v3(t−1), v4(t0)), v3(t1)〉 and
〈v2(t−3), v3(t−2), v4(t−1), v5(t0), v2(t1)〉, which are depicted in different
colors respectively.

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

t0 t1 t2 t3

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

t4 t5

v6 v6 v6 v6 v6 v6

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v6 v6 v6 v6

t-4 t-3 t-2 t-1

(b) If we update v1 and v2 at t0 and then update v3, v4 and v5 at t1, the
capacity of the link 〈v4(t1), v3(t2)〉 cannot accommodate the flows from v1
and v3 at t0 and the congestion occurs.

Fig. 2. Illustration of the different timed update sequences in the time-extended network.

Cu,v and transmission time σu,v for each link 〈u, v〉 ∈ E . The
graph contains two paths: pinit and pfin. The former is the old
routing path which is depicted as a solid line in our example
and the latter is the new routing path depicted as a dashed
line. Both pinit and pfin have the common source V + and
destination V −. For convenience, we summarize important
notations in Table I.

Let us introduce four related notations first.
Definition 1: Dynamic flow [6]: A dynamic flow on G is

a function f : E ×T → Z+ (Z+ represents the set of positive
integers) that satisfies the following conditions:

∑
(u,v)∈E+(v),t−σu,v≥0

xu,v(t− σu,v)−
∑

(u,v)∈E−(v)

xu,v(t)

=

−d v = V −,∀t ∈ T
0 ∀v ∈ V − {V −, V +},∀t ∈ T
d v = V +,∀t ∈ T

(1)

The dynamic flow conservation condition (1) indicates that
if one unit of flow leaves switch u at t−σu,v on link 〈u, v〉, one
unit of flow arrives v at t. Here d is the flow demand, which
is a positive integer. The time T is measured in discrete steps,
where T = {1, 2, . . . , t}. xu,v(t) characterizes the load at t,

which cannot go beyond the link capacity at each moment in
time.

0 ≤ xu,v(t) ≤ Cu,v,∀〈u, v〉 ∈ E ,∀t ∈ T (2)

Condition (2) ensures that the link capacity Cu,v cannot be
violated for ∀t ∈ T .

Definition 2: Loop-free condition: If one unit of flow is
routed through switch v at t, then it should not be routed
through the switch v at t′, where t′ > t.

Definition 3: Congestion-free condition: The congestion-
free condition holds if and only if Condition (2) always holds
for ∀t ∈ T throughout the update process.

Our model and approach can be visualized nicely with a
time-extended network concept: a network in which there is a
copy of each switch for every time step ti ∈ T and the links
are redrawn between these copies to express their transmission
delay. Succinctly:

Definition 4: The time-extended network: The time-
extended network GT is a directed graph G with switches
v(t) for all v ∈ V and t ∈ T . For each link 〈u, v〉 ∈ E
with transmission delay σu,v and capacity Cu,v , the network
GT has link 〈u(t), v(t+ σu,v)〉 with capacity Cu,v .

The time-extended network captures the dynamic process
of flow transmission in the network. Fig. 2 gives a time-
extended network example of Fig. 1(a), where t−1, . . ., t−4

and t−5 represent the history time steps, t0 represents the
current time step, and t1, t2, · · · represent the future time
steps. We can only update the switches in the current and
future time step and cannot update them in the history steps.
The reason why we illustrate history steps is because we are
required to check the existence of the forwarding loops defined
in (2). In Fig. 2(a), the flow on the link 〈v1(t0), v4(t1)〉 starts at
current time step t0, while the flow on the link 〈v2(t0), v6(t1)〉,
. . ., 〈v5(t0), v2(t1)〉 starts at history time step t−1, · · · , t−4,
respectively. For simplicity, we do not draw the links in the
time-extended network once the update is done.

Based on the above model and definition, we formulate the
Minimum Update Time Problem (MUTP) as an integer linear
program (3) in the time-extended network, where the initial
(solid line) and final (dashed line) routing paths are given.
We seek to find an optimal timed update sequence so as to
minimize the total update steps, such that the congestion- and
loop-free conditions hold at any moment in time. The path
set P (f) is pre-computed such that all paths are loop-free
defined in (2). The resulting path set P (f) are the input in
our formulation.

minimize |T | (3)

subject to
∑
f∈FT

d
∑

p∈P (f):〈u(ti),v(tj)〉∈p

xf,p ≤ Cu(ti),v(tj),

∀〈u(ti), v(tj)〉 ∈ ET , ti, tj ∈ T (3a)∑
p∈P (f)

xf,p = 1, ∀f ∈ FT , (3b)

xf,p ∈ {0, 1}, ∀f ∈ FT ,∀p ∈ P (f). (3c)

The formulation of the minimum update time problem is
shown in (3). The objective aims to minimize the number of
elements in set T , i,e., the time steps during the update. The
LHS of constraint (3a) characterizes the load of total flows
at link 〈u(ti), v(tj)〉, which must be less than or equal to its
capacity in order to meet the congestion-free condition defined
in (3). The optimization variable xf,p indicates whether flow
f is routed through path p in the time-extended network. This
also determines that which switch should be updated at which
time point. Constraint (3b) represents the flow can only be
routed through one path in the time-extended network. The
variable xf,p in constraint (3c) equals one if and only if the
flow is routed through path p, and equals zero otherwise.

C. Hardness Analysis

Theorem 1: MUTP is NP-complete.
Proof: Our proof works by reduction from [21], which

is a special case in our problem where all the link delays are
zero. As the work in [21] has already been proved to be NP-
complete, our problem is NP-complete as well.

III. A TREE ALGORITHM

In this section we design a tree algorithm to check the
existence of a feasible update sequence. The detailed process
is shown in Algorithm 1. We first explain the high level of this

algorithm. We construct a binary tree to perform node updates
step-by-step, where the root at the top is the destination and the
source node is located at the bottom of the left or right branch.
If the source node belongs to the left branch, we update one
of the nodes whose outgoing dashed line points from the left
to the right branch. Then the source node belongs to the right
branch and accordingly the flow is routed through the new
path once the update is complete. Next, we update a node
whose dashed line points from the right to the left branch. We
iteratively update the nodes from one branch to the other until
all the nodes are updated. Note that the update operation from
one branch to the other can always guarantee the loop-free
condition, and thus we only need to check the congestion-free
condition in our algorithm.

In Algorithm 1, the default root node is the destination
V −, which has no capacity constraints (line 1). We use V #

to denote a set of nodes whose updates have already been
performed. The search process proceeds from the top to the
bottom, and we add the nodes one-by-one into V # (lines
5-10). If V # is not empty, we merge the nodes into one
node V ′ and record the minimum link capacity between them
as V ′.cons (lines 12-13). Next we find node k through the
incoming dashed line of node V ′. By comparing the sum of
the link delays between the new path 〈k, V ′〉 and the old path
p′, we determine if the update of k is feasible or not (lines 14-
19). After that we construct candidate path sets Pvi (new path)
and Qvi (old path), and update node vi whose outgoing dashed
line points from one branch to the other. We select one path p
with the minimum path delay among the path set Pvi , as well
as its delay must be equal to or larger than that of the old path
q (lines 20-22). If such a path p does not exist and V ′.cons
cannot accommodate the old and new flows simultaneously,
false is returned (lines 23-24). Otherwise, we update the node
on the path p. The process is repeated until all the switches
have been updated. A detailed example is illustrated in Fig. 3.

Based on the explanation above, we have the following
theorem:

VV

vi

vj

v

vk vm

v

vp vq

vn

vy

vk

vx

V

vx

v

vp vq

vn

vy

vk

vm

Fig. 4. Illustration of three network update scenarios shown in Algorithm 1.

Theorem 2: Algorithm 1 can check the feasibility of Prob-
lem (3) in polynomial time if each link’s transmission delay
is identical.

Proof: Without loss of generality, we use the example in
Fig. 4 to prove our theorem.

Case 1 (the update operation in line 18): As shown in

v6

v5

v1

v2

v4

v3

v6

v5

v1

v2

v4

v3

v6

v5

v1

v2

v4

v3

v1

v4 v3

v3

v1

v4

v6

v4

v5

v3

v1

v2

v1

v4

v3

V V

V

Fig. 3. An example for finding a feasible congestion- and loop-free update sequence. The flow demand and the link capacity are one unit. The delay at each
link is one time unit. The path of the dynamic flow between source v1 and destination v6 is depicted as a red solid line. The red dotted circle represents that
the node is updated in the current time step.

Algorithm 1 Checking the existence of a congestion- and
loop-free timed update sequence
Input: The directed network G; the initial path pinit and the final

path pfin; φ(p): the sum of link delay in path p.
Output: A boolean variance that indicates whether there exists a

congestion- and loop-free update sequence or not.
1: v = V −, v.cons = +∞
2: t = 0
3: repeat
4: V # = ∅
5: while v.in.dashedline.source = ∅ do
6: if v.in.solidline.source is not unique then
7: break
8: u = v.in.solidline.source
9: V # = V # ∪ {u}

10: v = u
11: if V # 6= ∅ then
12: Merge all the nodes in V # into one node, denoted as V ′

13: V ′.cons = argmin〈u,v〉∈V# Cu,v
14: k = V ′.in.dashedline.source
15: p′ = 〈k, k.out.solidline.destination, . . . , V ′〉
16: if k is active and σk,V ′ ≤ φ(p′) and V ′.cons < 2d then
17: return false
18: Update k at t
19: t = t+ σk,V ′
20: Pvi = {〈vi, vj , . . . , V ′〉|〈vi, vj〉 ∈ P fin}
21: Qvi = {〈vi, vi.out.solidline.destination, . . . , V ′〉}
22: p = argminp∈Pvi

,q∈Qvi
|φ(p)≥φ(q) φ(p)

23: if p = ∅ and V ′.cons < 2d then
24: return false
25: for each node z ∈ p do
26: Update z at t
27: t = t+ φ(p)
28: until all the switches are updated
29: return true

Fig. 4(a), if the update of v violates the congestion-free
condition, both (4) and (5) hold at the same time:

V ′.cons < 2 · d (4)

φ(〈v, V ′〉) < φ(〈v, vj , vk, . . . , vi, V ′〉) (5)

Suppose there exists a path p∗ such that the condition
φ(〈v, V ′〉) > φ(p∗) holds, p∗ must contain at least an upward
dashed link as any updates for downward links between v
and V ′ will result in a forwarding loop in the current routing

configuration. We assume that this upward dashed link is
〈vj , vi〉 and accordingly p∗ is 〈v, vj , vi, V ′〉. This indicates
that the update time for vj should be earlier than that of v. If
the update is feasible, either (6) or (7) holds:

Cvj ,V ′ ≥ 2 · d (6)

φ(〈vj , vk, . . . , vi〉) ≤ φ(〈vj , vi〉) (7)

However, the Condition (6) cannot be established as (4) holds.
Thus Condition (7) must be established. Combining (5) and
(7), we obtain,

φ(〈v, V ′〉) < φ(〈v, vj , vi, V ′〉)

This demonstrates that if the update of v is infeasible at the
current time step, it is infeasible at any time step.

Case 2 (the update operation in line 26): As shown in
Fig. 4(b), suppose the update time of vx is earlier than that of
vm, so (8) holds in line 22 of Algorithm 1.

φ(〈vx, vk, vq, V ′〉) < φ(〈vm, vy, vn, · · · , vk, vq, V ′〉) (8)

If the update of v violates the congestion-free condition,
both (4) and (9) hold.

φ(〈v, vx, vk, vq, V ′〉) > φ(〈v, vp, V ′〉) (9)

Combining (8) and (9), we derive that:

φ(〈v, vp, V ′〉) < φ(〈v, vx, vm, vy, vn, · · · , vk, vq, V ′〉)

The inequation above indicates that the update of v is still
infeasible, even though the update time of vm is earlier than
that of vx. Similarly for the case shown in Fig. 4(c).

IV. A GREEDY ALGORITHM

We now design a greedy algorithm which operates on the
time-extended network, to solve MUTP. We explain how the
algorithm works using the example in Fig. 2. At each time
step, we plan to update as many switches as possible so as
to minimize the total update time. In Fig. 2(a), assume all
the switches (the destination switch v6 does not require to be
updated) are updated at t0, and three forwarding loops will
happen, as shown in Fig. 2(a): this violates the loop-freedom
condition. Updating v1 and v2 at t0 as shown in Fig. 2(b) is

also impossible, as the capacity of link 〈v4(t1), v3(t2)〉 cannot
accommodate the flows from v1 and v3 simultaneously, which
violates the congestion-free condition. To guarantee this, we
use the dependency set to capture the update order among
switches. According to the different link capacity constraints
in the time-extended network, we construct the dependency
relation set at each time step, as shown in Fig. 5. The detailed
calculation process will be explained in Algorithm 3. We can
observe that the dependency relation set at t0 is {(v2 → v4 →
v3 → v1 → v5)}, where we can only update v2. After that at
t1, the dependency relation set is {(v3 → v1 → v5), (v4)}.
We can update v3 and v4 at the same time step, and this
cannot violate link capacity constraints. However, a forwarding
loop will happen if v4 is updated. The procedure of checking
forwarding loops is described in Algorithm 4. Therefore, only
v3 is updated at t1. At the next time step t2, we re-calculate the
dependency relation set: it is {(v1 → v5), (v4)}. We update
v1 and v4 simultaneously at t2, and finally we update the last
one v5 at t3. The whole update procedure is congestion- and
loop-freedom.

Algorithm 2 Assigning a update time point for each switch
Input: The directed network G; the initial path pinit and the final

path pfin; the number of switches n.
Output: A solution {vi, tj} which indicates that vi is updated at tj .

1: Construct a set V∗, which contains the to-be-updated switches
2: T = {t−σ, . . . , t−1, t0, t1}, where σ =

∑n−1
k=1 σvk,vk+1

3: Construct the time-extended network GT
4: t = t0, i = 1
5: repeat
6: Apply Algorithm 3 to obtain a dependency relation set Ot at

t among the switches in set V∗
7: if Ot contains a dependency cycle then
8: return ∅
9: for each o ∈ Ot do

10: Pick the first element v̂ from o
11: Apply Algorithm 4 to check whether there results a for-

warding loop, if switch v̂ is updated at t
12: if there is no forwarding loop then
13: Update switch v̂ at t
14: V∗ = V∗ − v̂
15: t = ti
16: i++
17: T = T ∪ {ti}
18: Re-construct GT based on T
19: until Ot = ∅

At the beginning of Algorithm 2, we construct V∗, which
represents the set of switches that need to be updated (line 1).
The initial time set T contains the current time step t0, the
history time steps {t−σ, · · · , t−1} and the future time step t1.
We will add one future time step ti at each loop, until all the
switches are updated, or the update is infeasible (lines 5-19).
Based on the time step set T , we construct the time-extended
network (line 3). Furthermore, we calculate the dependency
relation set Ot, which is obtained from Algorithm 3 and which
will be discussed soon. If Ot contains a cycle, the algorithm
terminates, indicating that a congestion-free update order does
not exist (lines 7-8). Otherwise, we can update the switches

according to the order in each dependency relation (lines 9-
14). At the same time, we apply Algorithm 4 to check the
possibility of forwarding loops (line 11). If the occurrence of
a forwarding loop is impossible, we update v̂ at t and remove
v̂ from V∗ (lines 12-14). Finally, we add one further time step
ti to re-construct the time-extended network, and enter the
next loop (lines 16-18).

Algorithm 3 Finding a dependency relation set
Input: The time-extended network GT ; time point t
Output: A dependency relation set Ot

1: for each vi ∈ V∗ do
2: if vi.include = true then
3: continue
4: v = vi(t).out.dashedline.destination
5: t′ = t+ σvi,v
6: v′ = v(t′).in.solidline.source
7: ṽ = v(t′).out.solidline.destination
8: if Cv,ṽ < 2 · d then
9: Ot = Ot ∪ {(v′ → vi)}

10: v′.include = true
11: vi.include = true
12: Merge the dependency relation set with the common element.

The procedure of determining the dependency relation set
is shown in Algorithm 3. Let V∗ be the set of switches that
need to be updated. We start from an arbitrary switch vi ∈ V∗.
If vi is updated at t, the flow will be routed through the link
〈vi(t), v(t′)〉 in the time-extended network, where t′ − t =
σvi,v (lines 4-5). And then we find v′ and ṽ, which are the
last hop and next hop switches of v(t′) respectively (lines 6-
7). If the capacity of link 〈v, ṽ〉 cannot accommodate the flows
from vi and v′, we establish a dependency relation between
them (lines 8-9) and will not take them into account in the
next loop (lines 10-11). When the loop terminates (lines 1-
11), we merge the dependency relation set with the common
element (line 12). For example, we can merge {v1 → v2} and
{v2 → v3} into {v1 → v2 → v3} since both of them have the
common element v2.

t0 t1 t2 t3

v5

v1

v3

v4

v2 v4

v5

v1

v3 v4

v5

v1 v5

Fig. 5. Illustration of the resulting dependency relation set in the example of
the time-extended network shown in Fig. 2. The red dotted circle represents
that the switch is updated at the current time step.

Algorithm 4 describes how to check for the existence of
a forwarding loop. We search the possible forwarding loops
in the time-extended network. v(t) represents the switch v at
time step t, whose outgoing dashed line points to v∗ (line
1). We look back through the incoming solid line of v(t) and

Algorithm 4 Checking for forwarding loops
Input: The switch v; update time t
Output: A boolean variance which indicates if there exists a for-

warding loop when v is updated at t.
1: v∗ = v(t).out.dashedline.destination
2: repeat
3: v̂ = v(t).in.solidline.source
4: if v∗ = v̂ then
5: return true
6: until v̂ = V +

7: return false

find the switch v̂ (line 3). This searching procedure is repeated
until the source switch V + is found. If v∗ is equal to v̂ during
the searching procedure, it returns a true boolean variable that
indicates a forwarding loop exists and the update operation of
v at t is impossible (lines 4-5). If the condition (line 4) never
holds during this procedure, false is returned that indicates the
update is feasible (line 7).

Based on the analysis above, we have the following theo-
rem:

Theorem 3: The timed update sequence {vi, tj} obtained
from Algorithm 2 is congestion- and loop-free.

Proof: For each switch v, if it is updated at t, we
go back to its last hop switch v(t′)(t′ < t) in the time-
extended network, to check whether the flow had already
passed through it or not. This searching procedure stops
when the source switch is found. Hence, the loop-freedom
condition is always guaranteed by Algorithm 4. Furthermore,
the resulting update order based on the dependency relation
set from Algorithm 3 enforces the congestion-free condition.
Therefore, Algorithm 2 can always produce a congestion- and
loop-free update sequence if it exists.

V. EXPERIMENTAL EVALUATION

We evaluate Chronus using both a prototype implementation
and simulations.

Benchmark Schemes: We compare the following schemes
with Chronus.
• OR: The order replacement updates [15] that minimize

the number of rounds (i.e., the interactions between
switches and the controller) and avoid the forwarding
loops.

• TP: The two-phase updates [20] approach where we use
VLAN IDs as version number in our experiments.

• Chronus: Our greedy algorithm as shown in Algorithm 2.
• OPT: The optimal solution of the integer program (3)

obtained using the branch and bound method.
As discussed in Sec. I, the order replacement updates and
two-phase updates both do not take network capacity and link
transmission delay into account.

A. Implementation and Mininet Emulations

Implementation: We simplify Chronus with a control plane
implementation: the forwarding rules are installed and updated
via Floodlight’s REST API. We use Floodlight’s sleep()

TABLE II
FLOW TABLE AT SOURCE SWITCH R1 AND DESTINATION SWITCH R12 .

Flow table at source switch R1

Match Field ActionInPort SrcPfx DstPfx Tag
host 1 — 10.0.0.2 — Output: solidline
.

host 1 — 10.0.0.n — Output: solidline

Flow table at destination switch R12

Match Field ActionInPort SrcPfx DstPfx Tag
— — 10.0.0.2 — Output: host 2
.
— — 10.0.0.n — Output: host n

function to simulate time intervals and update the forwarding
rules at a specified time point. Concretely, we develop a
prototype of Chronus using the Floodlight 1.1 [1] controller
with Openflow v1.3. We use the destination IP address as
the matching field for forwarding. The corresponding routing
configurations at source and destination switches are shown in
Table II. For simplicity, we do not show the forwarding rules
for ARP packets in Table II. ARP packets are flooded to all
output ports. In our experiments, a flow is a traffic aggregate
between source and destination switch.

We now describe how to perform a timed network update
using our algorithms in our implementation. The procedure is
shown in Algorithm 5. We first obtain a solution to MUTP
using the greedy algorithm (line 1). Next we sort the results
and record the maximum time as t∗ from {tj} (lines 2-3).
Then we sequentially examine every time step and update
the corresponding switch set {vi}. We first send the update
messages (line 6), and then send the barrier request messages
(line 7). Upon receiving the barrier response message, the
update for switch vi is completed (line 8). In Floodlight,
OpenFlow barrier messages [2] are implemented by the
OFBarrierRequest and OFBarrierReply classes. The
algorithm sleeps for one time unit to simulate time intervals
and then enters into the next loop (line 9).

Algorithm 5 Performing the timed network update
Input: The directed network G; the initial path pinit and the final

path pfin.
Output: Update sequence of switch rules.

1: Apply Algorithm 2 and obtain solutions {vi, tj}.
2: Sort {vi, tj} according to tj .
3: t∗ = argmaxj tj
4: for t = 0 to t∗ do
5: if t = tj then
6: Send messages to update {vi}
7: Send barrier request message bi to each vi
8: Wait until receive all the barrier reply messages
9: Sleep for one time unit.

For completeness we now explain the implementation of
two-phase updates and order replacement updates. The two-
phase updates rely on packet tagging. We use VLAN IDs in
packet headers to index stages. In the first phase, new rules—
whose matching fields use the new VLAN ID that corresponds

0 5 10 15 20 25 30
450

500

550

600

650

700

Time (Second)

B
an

d
w

id
th

 c
o

n
su

m
p

ti
o

n
 (

M
b

p
s)

TP
Chronus
OR

Fig. 6. Bandwidth consumption.

100 200 300 400 500 600
0

20

40

60

80

100

The number of switches

T
h

e
co

n
g

es
ti

o
n

 c
as

es
 (

%
)

OPT
Chronus
OR

Fig. 7. Percentage of congestion
cases.

100 150 200 250 300 350
0

10

20

30

40

50

60

The number of switches

T
h

e
n

u
m

b
er

 o
f

co
n

g
es

te
d

 li
n

ks

Chronus
OR

Fig. 8. # of congested links.

100 200 300 400 500 600
0

200

400

600

T
h

e
n

u
m

b
er

 o
f

ru
le

s

Fig. 9. # of forwarding rules.

to the second stage—are added. During this phase, flows are
still forwarded according to existing rules as packets are still
stamped with the VLAN ID of the first stage. Once the update
is done for all switches, the protocol enters the second phase,
when we stamp every incoming packet with the new VLAN
ID. At this point the new rules become functional, and old
rules are removed by the controller. The order replacement
updates have already been proven to be NP-hard [15], when
aiming to minimize the number of rounds while avoiding
forwarding loops. We use the branch and bound method to
obtain the optimal solution of this integer program. When
performing updates in each round, our algorithm sleeps for
a while, which is a random number from the data of [9], so
as to simulate the asynchronous nature of data plane.
Mininet Setup: We conduct experiments on Mininet
2.2.1 [11], a high fidelity network emulator for SDNs, running
on a PC with an Intel i5-2400 quad-core processor. We
use OpenvSwitch version 2.3.1. Due to the single machine
limitation of Mininet, we adopt a small scale network topology
with 10 switches. We set the link capacity to 500 Mbps. The
link delay is set to be an integer between 50ms to 10s.
Experiment Results: Fig. 6 shows that link bandwidth con-
sumption varies with time during network updates. The ag-
gregate flow rate is fixed at 500 Mbps. We use the Floodlight
statistic module to measure the bandwidth consumption in
a specified link every one second. The OpenFlow protocol
does not provide a method to measure bandwidth consumption
in the data plane. To determine bandwidth consumption, the
controller queries the byte counters collected at every two time
points. The difference between these two counters divided by
the time intervals yields the bandwidth consumption. Usually,
congestion happens when the bandwidth consumption is high-
er than the link capacity, and a larger value indicates more
severe congestion in the network. We can observe that the
peak value of OR is around 600 Mbps at 9th and 16th second,
which can be beyond the buffer size and result in traffic loss,
whereas the fluctuation of Chronus and TP is relatively stable
and changes in the normal range.

B. Simulation

We also conduct extensive simulations to thoroughly eval-
uate Chronus at scale.

Setup. In addition to the small-scale network topology used
in Mininet experiments, here we use a large-scale network
topology. The initial routing path is fixed and the final routing
path is chosen randomly (i.e., the final path is based on

random routing). The initial and the final routing paths have
the common source and destination. We run the algorithms
on Intel i5-2400 quad-core processor. Each data point is an
average of at least 30 runs.

We first investigate the percentage of congestion cases by
comparing 500 different update instances in each run. In
Fig. 7, the number of switches varies from 100 to 600 at the
increment of 100 for each run. We find that Chronus performs
very close to OPT with just slightly more congestion cases
during updates. Specifically, when the number of switches
is 600, more than 65% update instances using Chronus and
OPT are congestion-free, while it is only 15% for OR. This
demonstrates that Chronus in general leads to a small degree of
congestion and significantly outperforms OR by around 60%.
Fig. 8 shows the sum of congested links in comparison using
the time-extended network. We can observe that Chronus can
decrease the number of congested links by 70% compared with
OR, especially when the number of switches becomes larger.

We now look at the rule space overhead of Chronus com-
pared with TP. The box plot in Fig. 9 shows the number of
rules for Chronus and the blue solid point shows them for
TP. We do not show the results using TP when the number
of switches is larger than 400, since its result is beyond the
maximum value of the y-axis. We can see that the number
of rules for TP increases more significantly than for Chronus,
as the number of switches increases. Specifically, the average
number of rules using TP and Chronus is 596 and 190
respectively, when the number of switches is 300. We observe
that Chronus can save over 60% rules than TP on average as
shown in Fig. 9. Note that these results become inaccurate
for switches that apply longest prefix matching or wild-card
rules. However, such rules are increasingly being substituted
with exact match rules in SDNs [4], [9], [19].

1K 2K 3K 4K 5K 6K
0

10

20

30

40

50

60

The number of switches

R
u

n
n

in
g

 t
im

e
(s

)

Chronus
OR
OPT

Fig. 10. Running time.

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Time units

C
D

F

Chronus
OPT

Fig. 11. Update time.

Finally we evaluate the running time and update time. The
running time of Chronus, OR and OPT is illustrated in Fig. 10.

We do not include TP as it does not require to calculate the
update sequence. We can observe that the running time of OR
and OPT are both less than 60 seconds for up to 2K switches.
When the number of switches is larger than 4K, OR and OPT
do not complete within 60 seconds and the their required
time is orders of magnitudes larger than Chronus. Chronus’s
running time is less than 60 seconds, even if the number of
switches is 6K. Fig. 11 shows the CDFs of the update time
when the number of switches is fixed at 40. We can see that
most updates using Chronus finish within 15 seconds and OPT
takes 13 seconds. The update time of Chronus can achieve near
optimal performance compared to OPT.

VI. RELATED WORK

We review prior art on network updates in SDNs. For a re-
cent survey on the subject, we refer the reader to [5]. Reitblatt
et al. [20] introduced a notion of per-flow consistent and per-
packet consistent network updates. The authors also describe
a two-phase commit protocol to preserve consistency when
transitioning between two different routing configurations.
FLIP [23] combines the advantages of the two-phase commit
protocol and the order-based rules replacement technique,
which preserves routing policies and significantly reduces
the memory overhead during network updates. Ludwig et
al. [15] aim to minimize the number of sequential controller
interactions when transitioning from the initial to the final
update stage. Another work by Ludwig et al. [14] considers
consistent network updates in the presence of middleboxes.
However, these works do not consider transient congestion.
SWAN [7] and zUpdate [13] try to find congestion-free update
plans in WAN and DCN, respectively. SWAN shows that if
each link has a certain slack capacity, a congestion-free update
sequence always exists. This condition is too strong to always
hold in practice. Brandt et al. [3] show that a congestion-
free update sequence still exists even if some links are fully
utilized. Dionysus [9] employs dependency graphs to find a
fast congestion-free update plan according to different runtime
conditions of switches. Mizrahi et al. [16], [18] propose a
time synchronization protocol between the controller and the
data plane, which uses accurate timing to trigger network
updates and reduce congestion. CCG [25] studies how to
safely implement customizable consistency polices in order
to minimize transition delay.

VII. CONCLUSION

We studied the problem of minimizing the route update time
in timed SDNs. We proposed a tree algorithm to check the
feasibility of an update in polynomial time and described a
greedy algorithm to solve the problem. Our evaluation results
show that our solutions can reduce transient congestion and
save flow table space. We plan to continue our study by
investigating approximation algorithms.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful
comments on drafts of this paper. The work is partly

supported by China 973 projects (2014CB340303), Chi-
na NSF grants (61672353,61472252, 61321491, 61502229,
61373130), U.S. NSF grants CNS 1629746, CNS 1564128,
CNS 1449860, CNS 1461932, CNS 1460971, CNS 1439672,
CNS 1301774, ECCS 1231461, the Danish Villum project
ReNet, and the program B for outstanding Ph.D. candidates
of Nanjing University.

REFERENCES

[1] Floodlight. http://floodlight.openflowhub.org/.
[2] Openflow switch specification. https://www.opennetworking.org/

images/stories/downloads/sdn-resources/onf-specifications/openflow/
openflow-spec-v1.4.0.pdf.

[3] S. Brandt, K.-T. Forster, and R. Wattenhofer. On consistent migration
of flows in sdns. In INFOCOM, pages 1–9, 2016.

[4] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian. Fabric: A
retrospective on evolving sdn. In HotSDN, pages 85–90, 2012.

[5] K.-T. Foerster, S. Schmid, and S. Vissicchio. Survey of consistent
network updates. In ArXiv Technical Report, 2016.

[6] L. R. Ford and D. R. Fulkerson. Construct maximal dynamic flows from
static flow. Operation Research., 6:419–433, 1958.

[7] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer. Achieving high utilization with software-driven
wan. In SIGCOMM, pages 15–26, 2013.

[8] V. Jalaparti, I. Bliznets, S. Kandula, B. Lucier, and I. Menache. Dynamic
pricing and traffic engineering for timely inter-datacenter transfers. In
SIGCOMM, pages 73–86, 2016.

[9] X. Jin, H. H. Liu, X. Wu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer. Dynamic scheduling of network updates.
In SIGCOMM, pages 539–550, 2014.

[10] P. Kazemian, G. Varghese, and N. McKeown. Header space analysis:
Static checking for networks. In NSDI, pages 113–126, 2012.

[11] B. Lantz, B. Heller, and N. McKeown. A network in a laptop: rapid
prototyping for software-defined networks. In HotNets, page 19, 2010.

[12] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter. Traffic
engineering with forward fault correction. In SIGCOMM, pages 527–
538, 2014.

[13] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. A. Maltz.
zupdate: updating data center networks with zero loss. In SIGCOMM,
pages 411–422, 2013.

[14] A. Ludwig, S. Dudycz, M. Rost, and S. Schmid. Transiently secure
network updates. In SIGMETRICS, pages 273–284, 2016.

[15] A. Ludwig, J. Marcinkowski, and S. Schmid. Scheduling loop-free
network updates: It’s good to relax! In PODC, pages 13–22, 2015.

[16] T. Mizrahi and Y. Moses. Software defined networks: It’s about time.
In INFOCOM, pages 1–9, 2016.

[17] T. Mizrahi, O. Rottenstreich, and Y. Moses. Timeflip: Scheduling
network updates with timestamp-based TCAM ranges. In INFOCOM,
pages 2551–2559, 2015.

[18] T. Mizrahi, E. Saat, and Y. Moses. Timed consistent network updates.
In SOSR, pages 21:1–21:14, 2015.

[19] B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy, A. Ghodsi,
and S. Shenker. Software-defined internet architecture: decoupling
architecture from infrastructure. In HotNets, pages 43–48, 2012.

[20] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker.
Abstractions for network update. In SIGCOMM, pages 323–334, 2012.

[21] S. S. Saeed Akhoondian Amiri, Szymon Dudycz and S. Wiederrecht.
Congestion-free rerouting of flows on dags. In ArXiv Technical Report,
2016.

[22] J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krishnamurthy, C. Maciocco,
M. Manesh, J. Martins, S. Ratnasamy, L. Rizzo, and S. Shenker.
Rollback-recovery for middleboxes. In SIGCOMM, pages 227–240,
2015.

[23] S. Vissicchio and L. Cittadini. Flip the (flow) table: Fast lightweight
policy-preserving sdn updates. In INFOCOM, pages 1–9, 2016.

[24] J. Zheng, H. Xu, X. Zhu, G. Chen, and Y. Geng. We’ve got you covered:
Failure recovery with backup tunnels in traffic engineering. In ICNP,
2016.

[25] W. Zhou, D. K. Jin, J. Croft, M. Caesar, and P. B. Godfrey. Enforcing
customizable consistency properties in software-defined networks. In
NSDI, pages 73–85, 2015.

