
Online Strategies for Intra and Inter Provider
Service Migration in Virtual Networks

Dushyant Arora
T-Labs / TU Berlin
Berlin, Germany
dushyant@

net.t-labs.tu-berlin.de

Marcin Bienkowski
Institute of Computer Science
University of Wrocław, Poland

mbi@
ii.uni.wroc.pl

Anja Feldmann
T-Labs / TU Berlin
Berlin, Germany

anja@
net.t-labs.tu-berlin.de

Gregor Schaffrath
T-Labs / TU Berlin
Berlin, Germany

grsch@
net.t-labs.tu-berlin.de

Stefan Schmid
T-Labs / TU Berlin
Berlin, Germany

stefan@
net.t-labs.tu-berlin.de

ABSTRACT
Network virtualization allows one to build dynamic distributed sys-
tems in which resources can be dynamically allocated at locations
where they are most useful. In order to fully exploit the benefits of
this new technology, protocols need to be devised which react effi-
ciently to changes in the demand. This paper argues that the field of
online algorithms and competitive analysis provides useful tools to
deal with and reason about the uncertainty in the request dynamics,
and to design algorithms with provable performance guarantees.

As a case study, we describe a system (e.g., a gaming applica-
tion) where network virtualization is used to support thin client ap-
plications for mobile devices to improve their Quality-of-Service
(QoS). By decoupling the service from the underlying resource in-
frastructure, it can be migrated closer to the current client loca-
tions while taking into account migration cost. This paper identifies
the major cost factors in such a system, and formalizes the corre-
sponding optimization problem. Both randomized and determin-
istic, gravity center based online algorithms are presented which
achieve a good tradeoff between improved QoS and migration cost
in the worst-case, both for service migration within an infrastruc-
ture provider as well as for networks supporting cross-provider mi-
gration. We report on our simulation results and also present an
explicit construction of an optimal offline algorithm which can be
used, e.g., to evaluate the competitive ratio empirically.

1. INTRODUCTION
The Internet today suffers from its own success: although the

Internet developed tremendously in size and speed, innovation is
constrained to lower layers (e.g., to new link technologies) or to
new applications “on the edge”. Typical manifestations of this “os-
sification” include the absence of inter domain multicast support

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPTComm’11, August 1–2, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-60558-606-9/09/08 ...$10.00.

or Quality-of-Service guarantees, and the difficulties to introduce
IPv6 in the public Internet. Due to its size, changing the Internet is
difficult, and despite their attractive properties, clean-slate designs
are problematic.

One attractive solution to enable innovation in the Internet is net-
work virtualization. The concept of virtualization promises an ab-
straction of heterogeneous resources and provides a more efficient
resource usage while ensuring isolation. This design principle has
been successfully employed for a long time not only to manage the
various resources of a single computer, such as memory or CPU,
but today entire machines are virtualized (“node virtualization”):
for example, the architecture of cloud computing systems is of-
ten fully virtualized, and renting physical machines is uncommon;
rather, customers are provided with virtual machines that may share
resources and that can be migrated to locations where the allocation
is efficient.

Network virtualization [11] goes one step further and virtual-
izes not only nodes but also links (e.g., through new technologies
such as OpenFlow). To the user, the virtual network appears as
a physical network. However, multiple virtual networks may co-
habit the same underlying network, sharing its physical links and
routers. The decoupling of virtual networks from physical con-
straints facilitates a resource efficient embedding of the virtual net-
works (VNets), and may also allow for migration (as long as the
specification of the virtual network is not violated).

The flexibility introduced by network virtualization technology
raises interesting research challenges. For example, the possibility
to seamlessly move services closer to the users can be exploited to
improve Quality-of-Service/Quality-of-Experience (QoS/QoE) pa-
rameters. However, as the migration comes at a certain cost, good
strategies are required to decide on when and where to move ser-
vices. This paper revolves around this question and focuses on sce-
narios where the dynamics of the user demand is hard to predict.

Concretely, this paper studies a mobile thin client application
(such as a game server [17]) that is supported by network virtual-
ization technology. We assume that the distribution of thin clients
and therefore the request pattern changes over time, e.g., due to
timezone effects: for instance, at 1 a.m. GMT many requests may
originate in Asian countries, then more and more requests come
from European users and later from the United States. In this set-
ting it can be beneficial to migrate (or re-embed) the service closer
to the users, e.g., to minimize access delays for the users and to

minimize network costs for the providers [16]. Network virtualiza-
tion allows us to realize such networks.

While moving services close to clients can reduce latency, mi-
gration comes at a cost: the bulk-data transfer imposes load on the
network and may cause a service disruption. In particular, the cost
of migration depends on the available bandwidth in the substrate
network [7]. Moreover, if VNets are provisioned across adminis-
trative domains belonging to multiple infrastructure providers, (in-
ter provider) migration entails certain transit (or roaming) costs.
To gain insights into this tradeoff, we identify the main costs in-
volved in this system. Intuitively, the benefits from virtualization
are higher the lower the migration cost is relative to the latency
penalty. A predictable access pattern may ease migration. How-
ever, in practice, user arrival patterns can be chaotic, and thus we
explicitly incorporate uncertainty about future arrivals.

The classic formal tool to study algorithms that deal with inputs
(or more specifically: request accesses) that arrive in an online fash-
ion and cannot be predicted is the competitive analysis framework.
In competitive analysis, the performance of a so-called online algo-
rithm is compared to an optimal offline algorithm that has complete
knowledge of the input in advance. In effect, the competitive anal-
ysis is a worst case performance analysis that does not rely on any
statistical assumptions or prediction models. We apply this frame-
work to network virtualization and propose—for a simplified model
where, e.g., the main access cost is delay to the server and the main
migration cost is the available bandwidth between migration source
and destination—a competitive migration algorithm whose perfor-
mance is close to the one of the optimal offline algorithm.

1.1 Related Work
Network Virtualization. There has been a significant interest

in virtual networks over the last years, which is manifested in the
various European (e.g., 4WARD or Trilogy), American (e.g., Clean
Slate or GENI) and Asian (e.g., AKARI) projects. Network virtu-
alization enables the co-existence of innovation and reliability [29]
and promises to overcome the “ossification” of the Internet [12].
Virtual networks can be realized on different layers and can be sup-
ported by new technologies such as VLANs and OpenFlow [22] for
traffic shaping and ensuring QoS. For a more detailed survey on
the subject, please refer to [11]. We are developing our own pro-
totype architecture, for which we also implemented a demonstrator
for the migration of a media streaming server. More information
on our project can be found in [29].

Embedding. A major challenge in network virtualization is the
embedding [23] of VNets, that is, the question of how to efficiently
and on-demand assign incoming service requests onto the topol-
ogy. Due to its relevance, the embedding problem has been in-
tensively studied in various settings, e.g., for an offline version
of the embedding problem see [20], for an online and competi-
tive algorithm see [13], for an embedding with only bandwidth
constraints see [14], for heuristic approaches without admission
control see [34], or for a simulated annealing approach see [26].
Since the general embedding problem is computationally hard, Yu
et al. [21] advocate to rethink the design of the substrate network
to simplify the embedding; for instance, they allow to split a vir-
tual link over multiple paths and perform periodic path migrations.
Lischka and Karl [19] present an embedding heuristic that uses
backtracking and aims at embedding nodes and links concurrently
for improved resource utilization. Such a concurrent mapping ap-
proach is also proposed in [9] with the help of a mixed integer
program (a more general formulation which also includes migra-
tion aspects can be found in [28]). Finally, several challenges of
embeddings in wireless networks have been identified by Park and

Kim [24].
In contrast to the approaches discussed above we, in this paper,

tackle the question of how to dynamically embed or migrate vir-
tual servers [25] in order to efficiently satisfy connection requests
arriving online at any of the network entry points, and thus use vir-
tualization technology to improve the quality of service for mobile
nodes. The relevance of this subproblem of the general embedding
problem is underlined by Hao et al. [16] who show that under cer-
tain circumstances, migration of a Samba front-end server closer to
the clients can be beneficial even for bulk-data applications.

Migration and Online Algorithms. The possibility to migrate
services without service interruption and even live has interesting
implications and poses new challenges. For instance, see [8] for
a recent attempt to model tradeoffs (in the cloud). To the best of
our knowledge, [3] and [1] (for online server migration), and [13]
(for online virtual network embeddings) are the only works to study
network virtualization from an online algorithm perspective. The
formal competitive migration problem is related to several classic
optimization problems such as facility location, k-server problems,
or online page migration. All these problems are a special case
of the general metrical task system (e.g., [5, 6]) for which there
is, e.g., an asymptotically optimal deterministic Θ(n)-competitive
algorithm, where n is the state (or “configuration”) space; or a ran-
domizedO(log2 n · log log n)-competitive algorithm given that the
state space fulfills the triangle inequality: this algorithm uses a
(well separated) tree approximation for the general metric space
(in a preprocessing step) and subsequently solves the problem on
this distorted space; unfortunately, both algorithmic parts are rather
complex.

In the field of facility location, researchers aim at computing
optimal facility locations that minimize building costs and access
costs (see, e.g., [15] for an online algorithm). In [18], Laoutaris et
al. propose a heuristic algorithm for a variant of a facility location
problem which allows for facility migration; this algorithm uses
neighborhood-limited topology and demand information to com-
pute optimal facility locations in a distributed manner. In contrast
to our work, the setting is different and migration cost is measured
in terms of hop count. There is no performance guarantee. In the
field of k-server problems (e.g., [5]), an online algorithm must con-
trol the movement of a set of k servers, represented as points in a
metric space, and handle requests that are also in the form of points
in the space. As each request arrives, the algorithm must determine
which server to move to the requested point. The goal of the al-
gorithm is to reduce the total distance that all servers traverse. In
contrast, in our model it is possible to access the server remotely,
that is, there is no need for the server to move to the request’s po-
sition. The page migration problem (e.g., [2]) occurs in managing
a globally addressed shared memory in a multiprocessor system.
Each physical page of memory is located at a given processor, and
memory references to that page by other processors are charged a
cost equal to the network distance. At times, the page may migrate
between processors, at a cost equal to the distance times a page
size factor. The problem is to schedule movements on-line so as to
minimize the total cost of memory references. In contrast to these
page migration models, we differentiate between access costs that
are determined by latency and migration costs that are determined
by network bandwidth.

There is an intriguing relationship between server migration and
online function tracking [4, 32]. In online function tracking, an en-
tity Alice needs to keep an entity Bob (approximately) informed
about a dynamically changing function, without sending too many
updates. The online function tracking problem can be transformed
into a chain network where the function values are represented by

the nodes on the chain, and a sequence of value changes corre-
sponds to a request pattern on the chain. In particular, it follows
from [4] that already for some very simple linear substrate networks
of size n = Θ(β), where β is the migration cost, no determinis-
tic or randomized online algorithm can achieve a competitive ratio
smaller than Ω(logn/ log log n).

Own Work and Multi-Provider Aspects. A preliminary ver-
sion of this paper was presented at the VISA workshop [3] (a
discussion of multiple server scenarios appeared at the Hot-ICE
workshop [1]). We extend the results in [3] in several respects:
First, we present a deterministic alternative to the randomized mi-
gration strategy derived in [3]; this deterministic online algorithm
is based on gravity centers and achieves a better competitive ra-
tio against adaptive adversaries. Second, we extend our model to
settings with multiple infrastructure providers, and describe com-
petitive intra and inter provider migration strategies. Provisioning
virtual network services across multiple providers is an interesting
topic which is hardly explored in literature so far; notable excep-
tions are PolyVINE [10], a distributed coordination protocol to per-
form cross-provider embeddings, or V-Mart [33] that describes an
auction framework for task partitioning. In the context of clouds,
there exists interesting literature as well, e.g., Reservoir [27] ex-
plores the notion of a federated cloud in which providers lease ex-
cess capacity to others in need of temporary additional resources,
similarly to electrical power grids. Finally, in contrast to [3], we
conducted extensive experiments to complement our formal analy-
sis.

1.2 Contributions and Organization
This paper studies a mobile network virtualization architecture

where thin clients on mobile devices access a service that can be
migrated closer to the access points to reduce user latency. We
identify the main costs in this system (Section 2) and introduce
an optimization problem accordingly. Both for networks with a
single provider (Section 3) as well as for networks with multiple
providers (Section 4), online migration strategies are presented that
are provably competitive to an optimal offline algorithm, i.e., that
achieve a good performance even in the worst-case. This paper also
describes an optimal offline algorithm which is useful for finding
optimal strategies at hindsight, for dealing with regular and periodic
request patterns, and for computing the competitive ratios of online
algorithms (Section 5). We report on our experiments in different
scenarios in Section 6. In Section 7, the paper concludes.

Note that an extended version of this article appears as ArXiv
Technical Report 1103.096.

2. ARCHITECTURE
Our work is motivated by the virtualization architecture pro-

posed in [29] for which we are in the process of developing a proto-
type implementation. The main roles of this architecture related to
this work are: The (Physical) Infrastructure Provider (PIP), which
owns and manages an underlaying physical infrastructure called
“substrate” (we will treat the terms infrastructure provider and sub-
strate provider as synonyms); the Virtual Network Provider (VNP),
which is responsible for assembling virtual resources from one or
multiple PIPs into a virtual topology; the Virtual Network Opera-
tor (VNO), which is responsible for the installation and operation
of a VNet over the virtual topology provided by the VNP; and the
Service Provider (SP), which offers application, data and content
services to end-users.

We assume that a service provider is offering a service to mobile
clients which can benefit from the flexibility of network and service
virtualization. The goal of the service provider is to minimize the

round-trip-time of its service users to the servers, by triggering mi-
grations depending, e.g., on (latency) measurements. Concretely,
VNP and/or PIPs will react on the SP-side changes of the require-
ments on the paths between server and access points, and re-embed
the servers accordingly.

In the remainder of this paper, if not stated otherwise, the term
provider will refer to the PIP role in the above architecture. In par-
ticular, we will study multi provider scenarios where the service
provider may decide to migrate an application across PIP bound-
aries.

2.1 General Cost Model
Formally, we consider a substrate network G = (V,E) man-

aged by one or multiple substrate providers (PIP). Each substrate
node v ∈ V has certain properties and features associated with it
(e.g., in terms of operating system or CPU power); in particular, we
assume that it has a computational capacity c(v). Similarly, each
link e = (u, v) ∈ E, with u, v ∈ V , has certain properties, e.g.,
it is characterized by a bandwidth capacity ω(e), and it offers the
latency λ(e).

In addition to the substrate network, there is a set T of external
machines (the mobile thin clients or simply terminals) that access
G by issuing requests to virtualized services hosted on a set of vir-
tual servers by G. There is a set of services S = {S1, S2, ...}
where each service Si can be offered by multiple servers s ∈ Si.
In the technical part of the paper we will focus on a single-service,
single-server scenario only. Each server s has a certain resource
or capacity requirement r(s) that needs to be allocated to s on the
substrate node where it is hosted.

In order for the machines in T to access the services S, a fixed
subset of nodes A ⊆ V serve as Access Points where machines
in T can connect to G. Due to the movement of machines in T ,
the access points can change frequently, which may trigger the mi-
gration algorithm. We define σt to be the multi-set of requests at
time t where each element is a tuple (a ∈ A,S ∈ S) specifying
the access point and the requested service S. (For ease of nota-
tion, when clear from the context, we will sometimes simply write
v ∈ σt to denote the multi-set of access points used by the differ-
ent requests.) Our main objective is to shed light onto the trade-off
between the access costs Costacc of the mobile clients to the cur-
rent service locations and the server migration cost Costmig: while
moving the servers closer to the requester may reduce the access
costs and hence improve the quality of service, it also entails the
overhead of migration.

We can identify the following main parameters which influence
the access and migration costs. A major share of Costacc is due to
the request latency, i.e., the sum of the requests’ latencies to the cor-
responding servers. Observe that the routing of the requests occurs
along the shortest paths (w.r.t. latency) on the substrate network. In
addition, the access cost depends on the server load, that is, the ac-
cess cost depends on the capacity c(v) of the hosting node v and the
resource demands r(s) of the servers s hosted by v. The correla-
tion between load and delay can be captured by different functions,
and is not studied further here. In this paper, we assume that re-
quests are relatively small, and hence, we do not explicitly model
bandwidth constraints in Costacc. In conclusion, at time t and for
some function f ,

Costacc(t) =
∑
rt∈σt

f (delay(rt), load(rt)) .

In contrast to the requests, which are rather light-weight, the
server state is typically large, and hence the traffic volume of mi-
gration cannot be neglected. The main cost of migration are service

outage periods and the migration itself. The migration cost Costmig

of a virtual server s ∈ S, or the outage period, hence depends to a
large extent on the available bandwidth ω(p) on the migration path
p : src dst (along the substrate network) between migration
source node src and destination node dst, and the size size(s) of
the application s to be migrated. Another major cost factor is the
transit costs, namely the number k of PIPs on the path. In sum-
mary:

Costmig(t) =
∑
s∈S

g(ω(p), k, size(s))

for some function g, where the migration cost is zero if src = dst.
Our model so far lacks one additional ingredient: request dy-

namics (e.g., due to time-zone effects or due to user mobility). One
approach would be to assume arbitrary request sets σt, where σt
is completely independent of σt−1. However, for certain applica-
tions it may be more realistic to assume that the mobile nodes move
“slowly” between the access points. Note that while users typically
travel between different cities or countries at a limited speed, these
geographical movements may not translate to the topology of the
substrate network. Thus, rather than modeling the users to travel
along the links of G, we consider on/off models where a user ap-
pears at some access point a1 ∈ A at time t, remains there for a
certain period ∆t, before moving to another arbitrary node a2 ∈ A
at time t+ ∆t.

One may assume that ∆t is exponentially distributed. How-
ever, in our formal analysis we assume a worst-case perspective
and consider arbitrary distributions for ∆t. Often, it is reasonable
to assume some form of correlation between the individual termi-
nal movements. For example, in an urban area, workers commute
downtown in the morning and return to suburbs in the evening. Or
in a planetary-scale substrate network, time zone aspects have to
be taken into account in the sense that during a day, first many re-
quests will originate from Asian countries, followed by an active
period in Europe and finally America. However, as it is rather hard
to describe and characterize such movement accurately we, in the
formal part of this paper, perform a worst case analysis (w.r.t. la-
tency) that does not use any statistical assumptions.

To what extent the system can benefit from virtual network sup-
port and migration depends on several factors, e.g., how frequently
the thin clients change the access points. Given rapid changes it
may be best to place the server in the middle of the network and
leave it there. On the other hand, if the changes are slower or can
be predicted, it can be worthwhile to migrate the server to follow
the mobility pattern. This constitutes the trade-off motivating this
paper.

2.2 Competitive Analysis
As already discussed, competitive analysis asks the question:

How well does the system perform compared to an optimal of-
fline strategy which has complete knowledge of the entire request
sequence in advance? In the following, we present an online mi-
gration strategy that is “competitive” to any other online or offline
solution for virtual network supported server migration. In order
to focus on the main properties and trade-offs involved in the vir-
tualization support of thin clients, we assume a simplified online
framework for our formal analysis. We consider a synchronized
setting where time proceeds in time slots (or rounds).1 In each
round t, a set of σt terminal requests arrive in a worst-case and
online fashion at an arbitrary set of access nodes A.

1Note that while this assumption simplifies the analysis, it is not
critical for our results.

Thus the embedding problem is equivalent to the following syn-
chronous game, where an online algorithm ALG has to decide on
the migration strategy in each round t, without knowing about the
future access requests. In each round t ≥ 0:

1. The requests σt arrive at some access nodes A.

2. The online algorithm ALG decides where inG to migrate the
servers S. If positions are changed, it pays migration costs
Costmig(t).

3. The online algorithm ALG pays the requests’ access costs
Costacc(t) to the corresponding servers (e.g, hop distance).

Note, that we allow ALG to migrate the virtual servers for all
the requests of the current time slot t. However, as we assume that
a request is much cheaper than a migration, and if there are not
too many requests arriving concurrently, our results also apply to
scenarios where the last two steps are reordered.

We aim at devising competitive algorithms ALG that minimize
the competitive ratio ρ: Let ALG(σ) be the total migration and
access costs incurred by ALG under a request arrival sequence σ (a
sequence of access points), that is,

ALG(σ) =
∑
t

Costacc(t) + Costmig(t).

Let OPT(σ) be the optimal cost of an offline algorithm OPT for
the given σ, that is, OPT has a complete knowledge of σ and can
hence optimize the server locations “offline”. ρ is the ratio of the
costs of ALG and OPT. Thus, our objective is to minimize:

ρ = max
σ

ALG(σ)

OPT(σ)

In case of online algorithms that use randomization, we consider
the expected costs against an oblivious adversary without access to
the outcome of the random coin flips of the algorithm.

For our analysis, we make the following simplification. The ac-
cess cost Costacc(t) is given by the latency on the shortest path
from the request to the service. Moreover, the migration cost
Costmig(t) is given by the bandwidth constraint of the smallest edge
capacity on the migration path, plus the number of PIPs traversed
times π. Let Costmig(u, v) denote the migration cost on a path
from u to v. (The path will be clear from the context.) Thus,
Costmig(u, v) = maxe size(s)/ω(e) + k · π where size(s) is the
size of the migrated server s, e is a link on the migration path from
u to v, k is the number of PIPs traversed and π is the cost of migrat-
ing across a PIP boundary. Observe that given a migration path, the
cost is different in case the migration occurs once along the entire
path compared to the case where it occurs in two steps at different
times.

3. INTRA PROVIDER MIGRATION
This section presents two online protocols for single server mi-

gration within a single provider (PIP). The main idea of both al-
gorithms is to divide time into epochs: As we will see, also an
optimal offline algorithm will have certain costs in such an epoch,
which allows us to compare its performance to the online algo-
rithms. While algorithm MIX uses randomization to identify good
locations to serve the current requests, algorithm CEN determinis-
tically migrates to the gravity centers of the demand. Before de-
scribing these two algorithms in detail, we briefly discuss static
strategies without migration.

3.1 The STAT Algorithm
In order to compare the benefits of migration to a static scenario,

we derive the competitive ratio of fixed strategies (see also [3]).

LEMMA 3.1. A system without migration yields a competitive
ratio of

ρ ∈ Θ(Diam(G)),

where Diam(G) is the network diameter of substrate network
G. [3]

In a fixed scenario, the best static algorithm STAT hosts s is in the
network center, i.e., the location which minimizes the worst-case
distance traveled by the requests, namely at node u for which u :=
arg minv∈V maxw∈V Costacc(v, w).

Note, since there is no migration in the fixed scenario, the com-
petitive ratio does not depend on any bandwidth constraints (i.e.,
on link weights). This means that in networks with highly hetero-
geneous links or with links whose capacity changes quickly over
time, a static solution without migration may be good.

3.2 The MIX Algorithm
We now describe an online migration algorithm MIX (see

also [3]). The basic idea of MIX is to strike a balance between
the request latency cost CostMIX

acc and the migration cost CostMIX
mig it

incurs, and to continuously move closer to a possible optimal posi-
tion. The intuition is that after a small number of migrations only,
either MIX is at the optimal position, or an optimal offline algo-
rithm OPT must have migrated as well during this time period. Ei-
ther way, OPT cannot incur much smaller costs than MIX. In other
words, by using MIX for moving to good locations in the network, a
possible offline algorithm that migrates less frequently cannot have
much lower access costs than MIX; on the other hand, an offline
strategy with frequent migrations will have similar costs to Costmig.

Let us first consider a scenario with constant bandwidth capaci-
ties, i.e., ω(e) = ω ∀e ∈ E and let β = size(s)/ω be the corre-
sponding migration cost.

The algorithm MIX divides time into epochs. In each epoch MIX
monitors, for each node v, the cost of serving all requests from this
epoch by a server kept at v. We denote this counter by C(v). MIX
keeps the server at a single nodew till C(w) reaches β. In this case,
MIX migrates the server to a node u chosen uniformly at random
among nodes with the property C(u) < β. If there is no such node,
MIX does not migrate the server, and the epoch ends in that round;
the next epoch starts in the next round and the counters C(v) are
reset to zero.

LEMMA 3.2. MIX is O(logn)-competitive in networks with
constant bandwidth. [3]

PROOF. Fix any epoch E and let β denote the migration cost. If
OPT migrates the server within E , it pays β. Otherwise it keeps it
at a single node paying the value of the corresponding counter at
the end of E . By the construction of MIX, this value is at least β,
and thus in either case OPT(E) ≥ β.

The migrations performed by MIX partition E into several
phases. According to our migration strategy, the access cost of
MIX in each phase is at most β. In [3], we show that the expected
number of migrations within one epoch is at mostHn, whereHn is
the n-th harmonic number. The number of phases is then Hn + 1,
and hence MIX(E) ≤ β ·Hn + β · (Hn + 1) = β ·O(logn). This
yields the competitiveness of MIX.

Note that the analysis does not rely on access costs being measured
as the number of hops. Rather, the analysis (and hence also the

result) is applicable to any metric which ensures that counters in-
crease monotonically over time, i.e., with additional requests.

For networks with general bandwidths, MIX can be adopted
in such a way that it migrates when the counter of the current
location v reaches size(s)/mine ω(e), that is, when C(v) ≥
size(s)/mine ω(e). Thus, the cost of the optimal algorithm in
each epoch is at least size(s)/maxe ω(e), while the cost of MIX
is at most size(s)/mine ω(e). Therefore, by the same arguments
as in the proof of Lemma 3.2, we immediately obtain the following
result.

THEOREM 3.3. MIX isO(µ·logn)-competitive in general net-
works, where µ = maxe,e′∈E ω(e)/ω(e′).

3.3 The CEN Algorithm
While for the analysis of MIX, we assumed an oblivious adver-

sary which cannot be adaptive with respect to the random choices
made by the online algorithm, we now focus on deterministic al-
gorithms CEN. As we will see, a logarithmic competitive ratio can
also be achieved. Again, we will first assume ω(e) = ω ∀e ∈ E
and β = size(s)/ω.

CEN divides time into epochs consisting of one or multiple
phases between which CEN migrates. Again, we have counters
C(v) for each node v that are set to zero at the beginning of an
epoch. These counters accumulate the access costs of an epoch if
the server was permanently located at v. Henceforth, we will call
all nodes v for which at time t, C(v) < β/40, active nodes at
time t. Assume that algorithm CEN is currently at some node v.
CEN remains at this node until it accumulated there access costs
of β. Then, a new phase starts, and CEN computes the gravity
center w, i.e., the “center” of the currently active nodes. For-
mally, let d denote the shortest path metric (w.r.t. access costs)
on the network G. The gravity center of a subset V ′ ⊆ V of
nodes is defined as the (not necessarily unique) node G(V ′) =
arg minv∈V ′

∑
u∈V ′ d(u, v). (Ties are broken arbitrarily.) CEN

migrates to w and a new phase starts. If there is no active node left,
the epoch ends.

In order to study the competitive ratio of CEN, we exploit the fact
that a request always increases the counter of several nodes besides
the gravity center (namely: a constant fraction) by at least a certain
value (again, a constant fraction) as well.

LEMMA 3.4. Let λ1 = 1/5 and λ2 = 1/4. Fix any active set
V ′. Let r be an arbitrary requesting node (at some step). Assume
the counter at the gravity center G(V ′) increased by F because of
this request. Then there are at least λ2 · |V ′| nodes from V ′ whose
counters increased at least by λ1 · F .

PROOF. Assume the contrary. It means that there are at least
(1−λ2)·|V ′| nodes from V ′ whose counter increase is smaller than
λ1 · F . Denote this set by V ′′. We know that the distance between
the request and the center is d(G(V ′), r) = F , and ∀u ∈ V ′′,
d(u, r) < λ1 · F . Therefore, ∀u, v ∈ V ′′, d(u, v) < 2λ1 · F : the
diameter of the set V ′′ is relatively small.

Now let ξ be any node of V ′′. We show that ξ would be a bet-
ter candidate for the gravity center than G(V ′) is. Using triangle

inequalities, we obtain∑
u∈V ′

d(G(V ′), u) =
∑
u∈V ′′

d(G(V ′), u) +
∑

u∈V ′\V ′′

d(G(V ′), u)

≥
∑
u∈V ′′

[
d(G(V ′), r)− d(u, r)

]
+

∑
u∈V ′\V ′′

d(G(V ′), u)

> (1− λ1) · |V ′′| · F +
∑

u∈V ′\V ′′

d(G(V ′), u)

=
4

5
· |V ′′| · F +

∑
u∈V ′\V ′′

d(G(V ′), u) ,

because d(G(V ′), r) = F and d(u, r) ≤ λ1 · F , and by substitut-
ing λ1 = 1/5. On the other hand, note that |V ′ \ V ′′| ≤ |V ′|/4 ≤
|V ′′|/3 and∑
u∈V ′

d(ξ, u) =
∑
u∈V ′′

d(ξ, u) +
∑

u∈V ′\V ′′

d(ξ, u)

< 2λ1 · |V ′′| · F

+
∑

u∈V ′\V ′′

[
d(ξ, r) + d(r,G(V ′)) + d(G(V ′), u)

]
< 2λ1 · |V ′′| · F + |V ′ \ V ′′| · (1 + λ1) · F

+
∑

u∈V ′\V ′′

d(G(V ′), u)

≤ 4

5
· |V ′′| · F +

∑
u∈V ′\V ′′

d(G(V ′), u)

because d(ξ, r) < λ1 · F , d(r,G(V ′)) = F , and by substituting
the value of λ1 = 1/5. This contradicts that G(V ′) is the gravity
center of V ′.

From Lemma 3.4 it follows that when the counter at the gravity
center exceeds a given threshold, the counter of many nodes besides
the center must be high as well.

LEMMA 3.5. Fix any threshold τ . When the counter at the
gravity center G(V ′) exceeds τ , then there exists V ′′ ⊆ V ′,
|V ′′| ≥ 1

8
· |V ′|, such that for all v ∈ V ′′, the counter at v is

at least τ/40.

PROOF. Assume the contrary. This means that there exists
V ′′ ⊆ V ′, |V ′′| > 7

8
· |V ′|, such that for all v ∈ V ′′, the counter at

v is smaller than τ/40. Hence
∑
v∈V ′′ C(v) < |V ′′| · τ/40 ≤

|V ′| · τ/40. On the other hand, by Lemma 3.4, each time the
counter C(G(V ′)) increases by F , at least 1/4 · |V ′| counters from
set V ′ (and hence at least 1/8 · |V ′| counters from set V ′′, since
|V ′ \ V ′′| ≤ |V ′|

8
) increase by F/5. Hence, in this case, the sum

of counters from V ′′ increases at least by 1/40 · |V ′| · F . There-
fore, when C(G(V ′)) ≥ τ ,

∑
v∈V ′′ C(v) ≥ |V ′| · τ/40, which is

a contradiction.

For the competitive ratio, we therefore have the following result.

THEOREM 3.6. CEN is O(logn)-competitive.

PROOF. First, we consider the cost of the optimal offline algo-
rithm. If OPT migrates in an epoch, it has costs β. Otherwise,
due to the definition of CEN, as there are no active nodes left at
the end of an epoch, the access costs of any node is also in the or-
der of Ω(β). Regarding CEN, we know that in each phase, access

costs are at most β, and it remains to study the number of phases
per epoch. By Lemma 3.5, we know that in each phase, the num-
ber of active nodes is reduced by a factor at least 1/8. Therefore,
there are at most O(logn) many phases per epoch, and the claim
follows.

Note that we did not try to optimize the constants in this proof,
and in practice (and in our simulations), alternative thresholds can
be applied yielding better (but qualitatively equivalent) results.

Again, for networks with general bandwidths, CEN can be
adopted in such a way that it migrates when the counter of the cur-
rent location v reaches size(s)/mine ω(e), that is, when C(v) ≥
size(s)/mine ω(e). By the same arguments as above, this adds a
factor maxe,e′∈E ω(e)/ω(e′) to the competitive ratio.

3.4 Remarks
Recall that the adversarial model for MIX and CEN is different,

and hence, one has to be careful when comparing the competitive
ratios: the bound for MIX only holds against oblivious adversaries,
and we expect the center of gravity approach to perform better in
worst-case scenarios with adaptive adversaries. Our simulations
show that the question which of the two strategies is more efficient
depends on the scenario.

Also note that both MIX and CEN are quite general with respect
to the measure of access costs, i.e., the derived bounds hold for
arbitrary latency functions on the links in case of MIX. This allows
us to generalize our analysis to scenarios where the access latency,
in addition to the sum of the link latencies, depends also on the
capacity of the hosting node: We simply need to take the capacities
into account when increasing the counters. In case of CEN, the
access costs must fulfill the triangle inequality.

4. INTER PROVIDER MIGRATION
The flexibility offered by network virtualization is not limited

to a single PIP. Rather, a Virtual Network Provider may have con-
tracts with multiple infrastructure providers, and provision a ser-
vice across PIP boundaries. In the following, we extend our model
to multiple provider scenarios. In particular, we assume that mi-
grating a server across a PIP boundary entails a fixed “roaming”
cost π for each transit. Since we assume that a PIP typically does
not reveal its internal resource structure, we seek to come up with
migration algorithms that pose minimal requirements on the knowl-
edge of a PIP topology.

In order to study the benefits of migration, we again con-
sider a scenario without migration (algorithm STAT). Of course,
Lemma 3.1 still applies: in a fixed scenario, the best location for
hosting s is in the network center, i.e., the location which mini-
mizes the distance traveled by the requests.

In the following, we present how the randomized algorithm MIX
and the deterministic algorithm CEN can be extended to multi-PIP
scenarios. We consider k PIPs, migration inside a PIP costs β,
access costs are the number of hops, and migrating across providers
costs π per crossed PIP boundary. We will concentrate on the more
realistic case where π ≥ β.2

It is sometimes useful to think of the PIP graph, the graph where
all the nodes of one PIP form one vertex and two PIPs are connected
if there is a connection between nodes of the respective PIPs in the
substrate graph. In particular, we will refer to the diameter of the
PIP graph, the largest number of PIPs to be traversed on a shortest
migration path, by ∆.
2If the total migration cost (over multiple providers) is in the order
of β, our single PIP algorithms could be applied without taking into
account transit costs.

Algorithm MIXk generalizes MIX by moving the server to one
of the PIPs having lower costs.

The algorithm MIXk divides time into three types of epochs:
huge epochs which consist of one or several large epochs which
in turn consist of dπ/βe small epochs. For each node u, we use
two counters C(u) and CL(u) to count the access cost during a
small and a large epoch, respectively. At the beginning of a small
epoch, all nodes are active; similarly, at the beginning of a huge
epoch, we say that all PIPs are active. During a small epoch, the
server is migrated within a single PIP only, until there is no node
u left with access costs smaller than β: MIXk monitors, for each
node u, the cost of serving all requests from this small epoch by a
server kept at u; MIXk keeps the server at a single node u till C(u)
reaches β. When this happens, MIXk migrates the server to a node
v chosen uniformly at random among nodes of the current PIP with
the property C(v) < β. If there is no such node, MIXk does not
migrate the server, and the small epoch ends in that round; the next
epoch starts in the next round and the counters C(u) are reset to
zero.

After dπ/βe small epochs a large epoch ends. Then MIXk de-
termines the set of PIPs that contain at least one node v for which
CL(v)< π; all other PIPs become inactive for the remainder of the
current huge epoch. If there are active PIPs left, MIXk chooses an
active PIP uniformly at random and migrates to an arbitrary node
of that PIP; otherwise the server stays where it is, and a new huge
epoch begins.

We can derive the following competitive ratio on MIXk’s perfor-
mance.

THEOREM 4.1. MIXk is O(log k · (logn1 + ∆))-competitive
in networks with constant bandwidth and k PIPs, where n1 is the
size of the largest PIP, and ∆ is the “diameter of the PIP graph”.

PROOF. From Lemma 3.2, we know that during a small epoch,
MIXk accumulates a cost of at mostO(β logn1): There is at most a
logarithmic number of migrations, and the access costs per phase is
at most β. Recall that a large epoch consists of at most dπ/βemany
small epochs, and subsequently, a remaining active PIP is chosen
uniformly at random. Thus, similarly to Lemma 3.2, it holds that
there are at most O(log k) many large epochs, yielding a total ac-
cess cost of O(log k · logn1 · π/β · β) = O(π log k · logn1). The
migration costs within PIPs are of the same order. The transit costs
to move the server between PIPs amounts to at most O(∆π log k).
Thus, the overall cost of MIXk per huge epoch is in the order of
O(π log k · (logn1 + ∆)). On the other hand, an optimal offline
algorithm must have had costs of at least π as well during this huge
epoch: if the optimal algorithm migrates between PIPs, the claim
follows trivially. Otherwise, the optimal offline algorithm is located
at a single PIP during the entire huge epoch; by the construction of
MIXk, there must exist a large epoch in which the optimal offline
algorithm incurred a cost of at least Ω(π): per small epoch the (ac-
cess or migration) costs are at least β, and there are dπ/βe many
small epochs in a large epoch. The claim follows.

Note that the proof of Theorem 4.1 is overly pessimistic, as it as-
sumes several large migration distances that the optimal offline al-
gorithm can avoid. We believe that MIXk performs better, also in
the worst-case, a conjecture that is also manifested by our experi-
ments.

A similar extension also works for the deterministic variant.

The algorithm CENk divides time into three types of epochs: a
huge epoch consists of multiple large epochs, and a large epoch
consists of 40dπ/βe small epochs. Again, we use counters C(u)
to accumulate the access costs of a node u during a small epoch;
in addition, a counter CL(u) is used to accumulate access costs
during a large epoch. In the beginning, all PIPs are set to active.
At the beginning of a small epoch, the C(u) values are set to zero
for all nodes within the current PIP. CENk then monitors, for each
node u, the cost of serving all requests from this small epoch by
a server kept at u. CENk leaves the server at a single node u till
C(u) reaches β. In this case, CENk migrates the server to a node
v which constitutes the center of gravity among the active nodes
of the current PIP, i.e., the nodes w of the current PIP for which
it still holds that C(w) < β/40. If there is no active node left
within the current PIP, a small epoch ends in that round; the next
small epoch starts in the next round. After 40dπ/βe small epochs,
a new large epoch starts, and all nodes u in the network with CL(u)
≥ π/40 become inactive with respect to the large epoch. Among
all remaining active nodes of the large epoch, CENk determines
their center of gravity and moves the server to the corresponding
PIP, and a new large epoch begins. Otherwise, if there is no PIP
left that contains active nodes, the server stays where it is, and a
new huge epoch starts.

We can show the following result.

THEOREM 4.2. CENk is O(logn · (logn1 + ∆))-competitive
in networks with constant bandwidth and k PIPs, where n1 is the
size of the largest PIP, and ∆ is the diameter of the PIP graph.

PROOF. First we compute the total cost of CENk in a huge
epoch. It follows from Theorem 3.6 that a large epoch consists
of 40dπ/βe small epochs of O(β logn1) access costs and at a log-
arithmic number of migrations amounting to cost O(β logn1) as
well, yielding a total cost per large epoch of O(π logn1). Now
observe that there is at most a logarithmic number of large epochs
per huge epoch: CENk guarantees that the server is not migrated to
another PIP as long as there is a node left in the current PIP with
access costs smaller than π; in particular, for the center of grav-
ity u of the current large epoch PIP, CL(u) ≥ π, and hence, again
by Theorem 3.6, a constant fraction of nodes in the entire network
must become inactive per large epoch. Summing up over the large
epochs and adding the transit cost of at mostO(∆π logn), the total
cost is at most O(logn · π(logn1 + ∆)). The cost of the optimal
offline algorithm can be analyzed similarly to the proof of Theo-
rem 4.1: If the offline algorithm migrates during a huge epoch, it
has a cost of at least π; otherwise, it has either access or migration
costs of at least β/40 per small epoch and hence Ω(π) per large
epoch, and the claim follows.

Again, we believe that the actual ratio is better, even in the worst-
case, as our analysis is pessimistic.

4.1 Remarks
Note that MIXk has the attractive property that it poses minimal

assumptions on the knowledge of the infrastructure topology and
allow for a large autonomy on the PIP level. Typically, substrate
providers are known for their secrecy on traffic matrices as well as
topology information. All information needed by MIXk is the set
of providers that could have served the requests of a certain time
period at lower cost, e.g., the set of providers that could make “a
better offer”. CENk on the other hand requires more knowledge
of the topology. It assumes that gravity centers can be computed
across PIP boundaries, which is unrealistic. However, while this

facilitates the formal analysis, we believe that pragmatic imple-
mentations that move the service, e.g., to the PIP which lies “at
the center” of the active providers, yield good approximations and
justify the validity of concept and analysis.

5. OPTIMAL OFFLINE ALGORITHMS
In the competitive analysis of our online algorithms we often

argued about a hypothetical optimal offline algorithm to which we
compare our costs; there was no need to find or describe the offline
algorithm explicitly. However, while the decisions when and where
to migrate servers typically needs to be done online, i.e., without
the knowledge of future requests, there can be situations where it
is interesting to study which migration pattern would have been
optimal at hindsight. For example, if it is known that the requests
follow a regular pattern (e.g., a periodic pattern per day or week),
it can make sense to compute an optimal migration strategy offline
and apply it in the future. Another reason for designing optimal
offline algorithms explicitly is that an optimal solution is required
to compute the competitive ratio in our simulations.

This section is based on the ideas described in the VISA work-
shop version of this paper [3]. We present an optimal offline al-
gorithm for our server migration problems. It turns out that of-
fline strategies can be computed for many different scenarios, and
we describe a very general algorithm here. Similarly to the online
algorithms, offline strategies can be computed efficiently both for
intra and inter provider migration.

It exploits the fact that migration exhibits an optimal substruc-
ture property: Given that at time t, the server is located at a given
node u, then the most cost-efficient migration path that leads to this
configuration consists solely of optimal sub-paths. That is, if a cost
minimizing path to node u at time t leads over a node v at time
t′ < t, then there cannot be a cheaper migration sub-path that leads
to v at time t′ than the corresponding sub-path.

OPT essentially fills out a matrix opt[time][node] where opt[t][v]
contains the cost of the minimal migration path that leads to a con-
figuration where the server satisfies the requests of time t from node
v. Assume that initially, the service is located at node v0. Thus, ini-
tially, opt[0][u] = Costmig(v0, u)+

[∑
v∈σ0

Costacc(v, u)
]

as the
migration origin is v0, and as a request needs to travel on the access
link from the terminal to v and from there to u (w.l.o.g., we assume
that the cost Costacc contains the first wireless hop from terminal
to substrate network).

For t > 0, we find the optimal values opt[t][u] by considering
the optimal migration paths to any node v at time t− 1, and adding
the migration cost from v to u. That is, in order to find the optimal
cost to arrive at a configuration with server at node u at time t:

min
v∈V

[
opt[t− 1][v] + Costmig(v, u) +

∑
w∈σt

Costacc(w, u)

]

where we assume that Costacc includes the first (wireless) hop of
the request from the terminal to the substrate network, and where
Costmig(v, v) = 0 ∀v.

We have the following runtime result.

THEOREM 5.1. The optimal offline migration policy OPT can
be computed in O(n3 + n2∑

t∈Γ |σt|) time, where Γ is the set of
rounds in which events occur.

PROOF. Note that we can constrain ourselves to optimal offline
algorithms where migration will only take place in “active” rounds

Γ with at least one request. This is useful in case of sparse se-
quences with few requests. The opt[·][·]-matrix contains |Γ| · n
entries. In order to compute a matrix entry, we need to consider
each node v ∈ A from which a migration can originate; for each
such node, the access cost from all the requests in σt need to be
computed. Both the shortest access paths and the migration costs
can be looked up in a pre-computed table (pre-computation in time
at most O(n3), e.g., by Floyd-Warshall’s algorithm) and require a
constant number of operations only, which implies the claim.

Note that OPT is not an online algorithm. Although opt[t] does
not depend on future requests, in order to reconstruct the optimal
migration strategy at hindsight, the configuration of minimal cost
after the last request is determined, and from there, the optimal
path is given by recursively finding the optimal configuration at
time t− 1 which led to the optimal configuration at time t.

6. SIMULATIONS
In order to complement our formal insights and in order to study

the behavior of our algorithms in different environments, we im-
plemented a simulation framework. In the following, we report on
some of our results in more detail.

6.1 Set-Up
We conducted experiments on both artificial Erdös-Rényi ran-

dom graphs (with connection probability 1%) as well as more re-
alistic graphs taken from the Rocketfuel project [30, 31] (including
the corresponding latencies for the access cost). Due to space con-
straints, the discussion of the latter is included in the ArXiv techni-
cal report only.

If not stated otherwise, we assume that link bandwidths are cho-
sen at random (either T1 (1.544 Mbit/s) or T2 (6.312 Mbit/s)), that
the server size is 2048MB, that β equals the server size divided by
the average bandwidth, and π = 3β.

Note that the runtime of the optimal offline algorithm and hence
the computation of the competitive ratio is expensive in large net-
works; therefore, the scale of our experiments is typically limited.
However, as our online algorithms have a much lower runtime than
OPT, experiments that do not rely on optimal offline results can be
conducted for much more nodes. Moreover, to gain insights into
the behavior of our algorithms in networks of this size, we use a
threshold τ = 1/3 (rather than τ = 1/40) to inactivate nodes in
CEN. This value is more practical and does not change the qualita-
tive results for large networks.

As the real traffic patterns are subject to confidentiality, we con-
sider two different simplified, artificial scenarios. Our scenarios as-
sume that the substrate topology does not reflect the geographic sit-
uation or user pattern at all. This is conservative of course, and on-
line migration algorithms typically perform better if requests move
along the topology.

Time Zones Scenario: This scenario models an access pattern
that can result from global daytime effects. We divide a day into T
time periods. At each time t, p% of all requests originate from a
node chosen uniformly at random from the substrate network (pes-
simistic assumption). The sojourn time of the requests at a given
location is distributed exponentially with parameter λ as well. In
addition, there is background traffic: the remaining requests origi-
nate from nodes chosen uniformly at random from all access points.

We also studied an alternative scenario, capturing traffic from
commuters.

Figure 1: Competitive ratio of CEN as a function of network
size and p in a time zone scenario. Results are averaged over
10 runs, we use λ = 10 and collected data over a period of 400
rounds.

Commuter Scenario: This scenario models an access pattern
that can result from commuters traveling downtown for work in
the morning and returning back to the suburbs in the evening. We
use a parameter T to model the frequency of the changes. At time
t mod T < T/2, requests originate from 2t mod T access points
chosen uniformly at random around the center of the network. In
the second half of the day, i.e., for t ∈ [T/2, ..., T], the pattern
is reversed. Then a new day starts. The commuter scenario can
come in different flavors, e.g., where the total number of requests
remains constant over time, or where the load is changing. We
use the static load scenario in our simulations. The total number
of requests per round is fixed to 2T/2. At time ti < T/2, the
requests originate from p = 2ti mod T of all access points including
the network center (2T/2/p requests per access point), until single
requests originate from 2T/2 access points. Then, the same process
is reversed until all 2T/2 requests originate from a single access
point: the network center. We assume that the time period between
ti and ti+1 is distributed exponentially with parameter λ.

6.2 Intra Provider Migration
A first set of experiments studies the competitive ratio as a func-

tion of the number of nodes. Figure 1 reports on the impact of dif-
ferent correlations of the requests in the time zone scenario. First,
we can observe that the competitive ratios are generally quite low,
and more or less independent of the network size. In order to take
into account that larger networks typically come with a larger re-
quests set, we assume that the number of requests per round is one
fifth of the network size. We can see that the competitive ratios of
CEN are again quite low, but the optimal offline algorithm can do
relatively better if p is large, which meets our intuitions.

The same results for MIX can be seen in Figure 2. Again, larger
p yield higher ratios, and generally the performance is worse than
the one of CEN.

Another interesting question regards how the competitive ratio
depends on the dynamics, i.e., on λ. Figure 3 presents our results
for MIX and CEN. Although the variance is quite high (this is typi-
cal, especially for MIX), we can see a trend that in case of very high
dynamics and very low dynamics, the competitive ratio is slightly
lower than for λ values in-between (λ is the mean stay duration).
This can be explained by the fact that OPT can optimize relatively
more in scenarios where the online migration decisions are not ob-
vious.

Figure 2: Same experiment as Figure 1 for MIX.

Figure 3: Competitive ratio in time zone scenario (with p =
60%) as a function of λ and averaged over 10 runs and in a
network of 60 nodes. We ran the experiment for 200 rounds.

We note that for the random graphs of the size used in our exper-
iments, the diameter is relatively low and hence STAT typically has
a good performance as well.3 Figure 4 shows that both online al-
gorithms perform well (and better than in the time-zone scenario).
One takeaway from our experiments with the different scenarios is
that migration is relatively more beneficial in these instances of the
commuter scenario compared to the time zone instances studied.

6.3 Inter Provider Migration
We also conducted some experiments with multiple PIPs. Gen-

erally, we used the same random topologies to model a single PIP
network, and connected different PIPs in a circular manner using a
random connection between adjacent providers.

As in the intra provider scenario, we first report on scalability.
Figure 5 plots the competitive ratio as a function of the total number
of nodes per provider, given that there are three providers. The
ratios are similar to the single PIP case, MIXk is slightly worse
than CENk, and constant bandwidth scenarios yield lower ratios.

Figure 6 shows the effect of different correlation (p values) for
CENk, and Figure 7 studies the analogous situation for MIXk.

It turns out that both MIXk and CENk are relatively robust to
different values of x, the relative cost of transit compared to migra-
tion, although MIXk slightly benefits from lower migration costs,
as we would expect (see Figure 8).

3In additional experiments, we observed that in the commuter sce-
nario, it is generally worse than in the time zone scenario.

Figure 4: Commuter scenario with T = 3, server size 30MB
λ = 10, runtime 200 rounds and averaged over 20 runs.

Figure 5: Competitive ratio in time zone scenario (with p =
0%) with three providers, server size 30MB, λ = 2 and a run-
time of 50 rounds. We average the ratio over five runs.

7. CONCLUSION
At the heart of network virtualization lies the ability to react to

changing environments in a flexible fashion. In order to optimally
exploit the benefits from virtualization, algorithms need to be de-
signed that adapt dynamically to the current demand; this is typi-
cally difficult as future demand is hard to predict. We believe that
competitive analysis is an important tool to devise and understand
such online algorithms.

This paper studied the cost-benefit tradeoff of online migration
in a system supported by network virtualization, and compared our
system to a setting without migration. We derived the first migra-
tion algorithms, both for inter and intra provider scenarios, which
are competitive even in the worst-case.

We understand our work as a first step towards a better under-
standing of competitive virtual service migration, and there are
several interesting directions for future research. For instance, we
believe that the bounds on the competitive ratio for multiple PIPs
are overly pessimistic and can be improved. We also plan to study
(simplified versions of) our algorithms in the wild, i.e., in our proto-
type [29] architecture; indeed, we already implemented a demon-
strator which migrates a streaming server between different loca-
tions in a German network.

Finally, we emphasize that while our formal considerations may
give insights into the benefits of this new technology, e.g., in terms
of improved quality of service, whether and how mobile network

Figure 6: Time zone scenario with three PIPs, λ = 5, runtime
200 rounds: competitive ratio of CENk as a function of provider
size and p.

Figure 7: Like Figure 6 but for MIXk.

provider will adapt such an approach also depends on many eco-
nomic factors that are not taken into account in our model.

Acknowledgments
Part of this work was performed within the Virtu project, funded
by NTT DoCoMo Euro-Labs, and the Collaborative Networking
project funded by Deutsche Telekom AG. We would like to thank
our colleagues in these projects for many fruitful discussions; in
particular: Dan Jurca (now at Huawei Technologies Duesseldorf
GmbH), Wolfgang Kellerer, Ashiq Khan, Kazuyuki Kozu, and Jo-
erg Widmer (now at Institute IMDEA Networks).

Special thanks go to Ernesto Abarca who was a great help dur-
ing the prototype implementation. We also thank Johannes Grassler
and Lukas Wöllner for their help with the prototype and the migra-
tion demonstrator. M. Bienkowski is supported by MNiSW grants
number N N206 368839, 2010–2013 and N N206 257335, 2008–
2011.

8. REFERENCES
[1] D. Arora, A. Feldmann, G. Schaffrath, and S. Schmid. On

the benefit of virtualization: Strategies for flexible server
allocation. In Proc. USENIX Workshop on Hot Topics in
Management of Internet, Cloud, and Enterprise Networks
and Services (Hot-ICE), 2011.

[2] M. Bienkowski. Migrating and replicating data in networks.
Computer Science - Research and Development, 2011.

Figure 8: Ratio as a function of x = π/β. Time zone scenario
(p = 50%) with 3 PIPs, runtime 400, PIP size 20 nodes, λ = 5,
averaged over 10 iterations.

[3] M. Bienkowski, A. Feldmann, D. Jurca, W. Kellerer,
G. Schaffrath, S. Schmid, and J. Widmer. Competitive
analysis for service migration in vnets. In Proc. ACM
SIGCOMM VISA, 2010.

[4] M. Bienkowski and S. Schmid. Online function tracking with
generalized penalties. In Proc. 12th Scandinavian
Symposium and Workshops on Algorithm Theory (SWAT),
2010.

[5] A. Borodin and R. El-Yaniv. Online computation and
competitive analysis. Cambridge University Press, 1998.

[6] A. Borodin, N. Linial, and M. E. Saks. An optimal on-line
algorithm for metrical task system. J. ACM, 39(4):745–763,
1992.

[7] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg.
Live wide-area migration of virtual machines including local
persistent state. In Proc. VEE, 2007.

[8] D. Breitgand, G. Kutiel, and D. Raz. Cost-aware live
migration of services in the cloud. In Proc. USENIX
Workshop on Hot Topics in Management of Internet, Cloud,
and Enterprise Networks and Services (Hot-ICE), 2011.

[9] K. Chowdhury, M. R. Rahman, and R. Boutaba. Virtual
network embedding with coordinated node and link
mapping. In Proc. IEEE INFOCOM, 2009.

[10] M. Chowdhury, F. Samuel, and R. Boutaba. PolyViNE:
Policy-based virtual network embedding across multiple
domains. In Proc. ACM SIGCOMM VISA, 2010.

[11] M. K. Chowdhury and R. Boutaba. A survey of network
virtualization. Elsevier Computer Networks, 54(5), 2010.

[12] D. D. Clark, J. Wroclawski, K. R. Sollins, and R. Braden.
Tussle in cyberspace: Defining tomorrow’s Internet. In Proc.
SIGCOMM, 2002.

[13] G. Even, M. Medina, G. Schaffrath, and S. Schmid.
Competitive and deterministic embeddings of virtual
networks. In ArXiv Technical Report 1101.5221, 2011.

[14] J. Fan and M. H. Ammar. Dynamic topology configuration in
service overlay networks: A study of reconfiguration
policies. In Proc. IEEE INFOCOM, 2006.

[15] D. Fotakis. On the competitive ratio for online facility
location. In Proc. 30th International Conference on
Automata, Languages and Programming (ICALP), also
appeared in Algorithmica 50(1), pp. 1-57, 2008, pages
637–652, 2003.

[16] F. Hao, T. V. Lakshman, S. Mukherjee, and H. Song.
Enhancing dynamic cloud-based services using network
virtualization. SIGCOMM Comput. Commun. Rev.,
40(1):67–74, 2010.

[17] U. C. Kozat, Y. Gwon, and R. Jain. An overlay server system
(oss) platform for multiplayer online games over mobile
networks. In Proc. Global Telecommunications Conference,

2006 (GLOBECOM), 2006.
[18] N. Laoutaris, G. Smaragdakis, K. Oikonomou, I. Stavrakakis,

and A. Bestavros. Distributed placement of service facilities
in large-scale networks. In Proc. IEEE INFOCOM, 2007.

[19] J. Lischka and H. Karl. A virtual network mapping algorithm
based on subgraph isomorphism detection. In Proc. ACM
SIGCOMM VISA, pages 81–88, 2009.

[20] J. Lu and J. Turner. Efficient mapping of virtual networks
onto a shared substrate. In Technical Report,
WUCSE-2006-35, Washington University, 2006.

[21] J. R. M. Yu, Y. Yi and M. Chiang. Rethinking virtual
network embedding: Substrate support for path splitting and
migration. ACM SIGCOMM Computer Communication
Review, 38(2):17–29, Apr 2008.

[22] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. Openflow:
Enabling innovation in campus networks. SIGCOMM
Comput. Commun. Rev., 38(2):69–74, 2008.

[23] B. Monien and H. Sudborough. Embedding one
interconnection network in another. In Computational Graph
Theory, 1990.

[24] K.-M. Park and C.-K. Kim. A framework for virtual network
embedding in wireless networks. In Proc. 4th International
Conference on Future Internet Technologies (CFI), pages
5–7, 2009.

[25] R. Potter and A. Nakao. Mobitopolo: A portable
infrastructure to facilitate flexible deployment and migration
of distributed applications with virtual topologies. In Proc.
ACM SIGCOMM VISA, pages 19–28, 2009.

[26] R. Ricci, C. Alfeld, and J. Lepreau. A solver for the network
testbed mapping problem. SIGCOMM Comput. Commun.
Rev., 33(2):65–81, 2003.

[27] B. Rochwerger, D. Breitgand, A. Epstein, D. Hadas, I. Loy,
K. Nagin, J. Tordsson, C. Ragusa, M. Villari, S. Clayman,
E. Levy, A. Maraschini, P. Massonet, H. Munoz, and
G. Toffetti. ReservoirŮwhen one cloud is not enough. IEEE
Computer, 2011.

[28] G. Schaffrath, S. Schmid, and A. Feldmann. Generalized and
resource-efficient VNet embeddings with migrations. In
ArXiv Technical Report 1012.4066, 2011.

[29] G. Schaffrath, C. Werle, P. Papadimitriou, A. Feldmann,
R. Bless, A. Greenhalgh, A. Wundsam, M. Kind,
O. Maennel, and L. Mathy. Network virtualization
architecture: Proposal and initial prototype. In Proc. ACM
SIGCOMM VISA, 2009.

[30] N. Spring, R. Mahajan, and T. Andersonr. Quantifying the
causes of path inflation. In Proc. SIGCOMM, 2003.

[31] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson.
Measuring ISP topologies with rocketfuel. IEEE/ACM Trans.
Netw., 12(1):2–16, 2004.

[32] K. Yi and Q. Zhang. Multi-dimensional online tracking.
[33] F. Zaheer, J. Xiao, and R. Boutaba. Multi-provider service

negotiation and contracting in network virtualization. In
Proc. 12th IEEE/IFIP Network Operations and Management
Symposium (NOMS 2010), 2010.

[34] Y. Zhu and M. H. Ammar. Algorithms for assigning substrate
network resources to virtual network components. In Proc.
IEEE INFOCOM, 2006.

