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Motivation

Peer-to-Peer Network

» Decentralized
» Recover from faults
= Self-stabilizing

» Nice geometric properties

Related Work
» 1-D graphs: Line, ring, and skip graphs

» 2-D graphs: Delaunay graph in wireless systems
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Delaunay Graphs

Assume nodes in general position.

Definition (Delaunay Graph Gp)
{u, v} € Gp iff some circle C contains u, v but no other nodes.
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Delaunay Graphs

Assume nodes in general position.
Definition (Delaunay Graph Gp)
{u, v} € Gp iff some circle C contains u, v but no other nodes.
Properties
» Triangulation

» Geometric spanner

» Allows greedy routing
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Model (1)

» Only direct neighbors known
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Model (1)

» Only direct neighbors known
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Model (2)

» Updates in rounds

C

Initial graph
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Model (2)

» Updates in rounds

C a C

Initial graph Local updates Update graph
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Problem Statement

Situation

» Start with weakly connected graph

» Nodes in general position
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Problem Statement

Situation

» Start with weakly connected graph

» Nodes in general position

Task

» Converge to Delaunay graph
» Little resources (number of edges)

» Monotonous behaviour
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Trivial Strategy

1. If local incorrectness appears, calculate complete graph: O(n)

2. Compute Delaunay graph.
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Conclusion

Trivial Strategy

1. If local incorrectness appears, calculate complete graph: O(n)

2. Compute Delaunay graph.
Criticism
» Too many edges

» Not monotonous
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Local Update

Compute Delaunay graph of neighbors of v.
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Local Update

Compute Delaunay graph of neighbors of v.
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Rule | (1)

Select edges to local neighbors of v.
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Rule | (2)

Select circular edges around v.
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Rule Il

Connect local non-neighbors (nearest neighbor strategy).

"Temporary edges”
/ |
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Main Theorem

Theorem
Using this algorithm, any weakly connected graph G converges in
O(n®) rounds to the Delaunay graph.

If G is a super graph of the Delaunay graph, it converges in O(n)
rounds.
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Algorithm

Proof Idea

» Delaunay edges don't disappear.

» Temporary edges (Rule Il) shorten in each step.
» Define potential ¢(G) which

» has only O(n?) values,
> decreases at least every n steps, and
> is zero if and only if G is a super graph of the Delaunay graph.

» Superfluous edges disappear in n — 1 rounds.

= Convergence in O(n%) rounds
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Example Proof

Lemma
The only 'stable’ graph is the Delaunay graph.

Proof.

'Stable’ means 'locally triangulated’.

"Locally triangulated’ implies planar.

>

>

» Planar and 'stable’ implies triangulated.

» From any triangulation, edge flips lead to the Delaunay graph.
=

'Stable’ implies Delaunay graph.
L]
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Experiments

Setting

» Random graphs

» Up to 500 nodes
» Various topologies:
» Random tree
Maximum spanning tree
Clique
Slightly disturbed circle

v vyy
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Experiments

Setting

» Random graphs

» Up to 500 nodes
» Various topologies:
» Random tree
Maximum spanning tree
Clique
Slightly disturbed circle

v vyy

Measurements

» Number of rounds

» Number of edges
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Statistics: Runtime
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Statistics: Number of edges
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Results

Run time much better than analysis
Number of edges can rise in first rounds, but not too much

Results stable for randomly distributed nodes

vV v.v Y

High variance for CIRCLE topology
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Conclusion

» Self-stabilizing Delaunay graph construction
» Worst case time bound: O(n®) rounds

» Experiments on random graphs:

» Less than n rounds
» Moderate edge growth
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Open Problems

Better bound on number of rounds
Bounds for edge growth
Construct worst case examples

Alternative strategies (Rule II)

vV vVv.v. v Yy

Resolve round scheduling
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Thank youl!
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