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Motivation

Peer-to-Peer Network

I Decentralized

I Recover from faults

⇒ Self-stabilizing

I Nice geometric properties

Related Work

I 1-D graphs: Line, ring, and skip graphs

I 2-D graphs: Delaunay graph in wireless systems
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Delaunay Graphs

Assume nodes in general position.

Definition (Delaunay Graph GD)

{u, v} ∈ GD iff some circle C contains u, v but no other nodes.

Properties

I Triangulation

I Geometric spanner

I Allows greedy routing
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Model (1)

I Only direct neighbors known
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Model (2)

I Updates in rounds
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Problem Statement

Situation

I Start with weakly connected graph

I Nodes in general position

Task

I Converge to Delaunay graph

I Little resources (number of edges)

I Monotonous behaviour
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Trivial Strategy

1. If local incorrectness appears, calculate complete graph: O(n)

2. Compute Delaunay graph.

Criticism

I Too many edges

I Not monotonous
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Local Update

Compute Delaunay graph of neighbors of v .
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Rule I (1)

Select edges to local neighbors of v .
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Rule I (2)

Select circular edges around v .
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Rule II

Connect local non-neighbors (nearest neighbor strategy).
”Temporary edges”
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Main Theorem

Theorem
Using this algorithm, any weakly connected graph G converges in
O(n3) rounds to the Delaunay graph.

If G is a super graph of the Delaunay graph, it converges in O(n)
rounds.
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Proof Idea

I Delaunay edges don’t disappear.

I Temporary edges (Rule II) shorten in each step.
I Define potential φ(G ) which

I has only O(n2) values,
I decreases at least every n steps, and
I is zero if and only if G is a super graph of the Delaunay graph.

I Superfluous edges disappear in n − 1 rounds.

⇒ Convergence in O(n3) rounds
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Example Proof

Lemma
The only ’stable’ graph is the Delaunay graph.

Proof.

I ’Stable’ means ’locally triangulated’.

I ’Locally triangulated’ implies planar.

I Planar and ’stable’ implies triangulated.

I From any triangulation, edge flips lead to the Delaunay graph.

⇒ ’Stable’ implies Delaunay graph.
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Experiments

Setting

I Random graphs

I Up to 500 nodes
I Various topologies:

I Random tree
I Maximum spanning tree
I Clique
I Slightly disturbed circle

Measurements

I Number of rounds

I Number of edges
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Statistics: Runtime
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Statistics: Number of edges
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Results

I Run time much better than analysis

I Number of edges can rise in first rounds, but not too much

I Results stable for randomly distributed nodes

I High variance for CIRCLE topology
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Conclusion

I Self-stabilizing Delaunay graph construction

I Worst case time bound: O(n3) rounds
I Experiments on random graphs:

I Less than n rounds
I Moderate edge growth
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Open Problems

I Better bound on number of rounds

I Bounds for edge growth

I Construct worst case examples

I Alternative strategies (Rule II)

I Resolve round scheduling
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Thank you!
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