Motivation	Preliminaries	Algorithm	Experiments	Conclusion

A Self-Stabilizing and Local Delaunay Graph Construction

Riko Jacob¹, **Stephan Ritscher**¹, Christian Scheideler², Stefan Schmid²

¹ Institut für Informatik, Technische Universität München jacob@in.tum.de, ritsches@in.tum.de

² Department of Computer Science, University of Paderborn scheideler@upb.de, schmiste@mail.upb.de

18. December 2009

Motivation	Preliminaries	Algorithm	Experiments	Conclusion

Contents

Motivation	Preliminaries	Algorithm	Experiments	Conclusion

Motivation

Peer-to-Peer Network

- Decentralized
- Recover from faults
- \Rightarrow Self-stabilizing
 - Nice geometric properties

Motivation	Preliminaries	Algorithm	Experiments	Conclusion

Motivation

Peer-to-Peer Network

- Decentralized
- Recover from faults
- \Rightarrow Self-stabilizing
 - Nice geometric properties

Related Work

- 1-D graphs: Line, ring, and skip graphs
- 2-D graphs: Delaunay graph in wireless systems

Motivation	Preliminaries	Algorithm	Experiments	Conclusion

Delaunay Graphs

Assume nodes in general position. Definition (Delaunay Graph G_D) $\{u, v\} \in G_D$ iff some circle C contains u, v but no other nodes.

Motivation	Preliminaries	Algorithm	Experiments	Conclusion

Delaunay Graphs

Assume nodes in general position.

Definition (Delaunay Graph G_D) $\{u, v\} \in G_D$ iff some circle C contains u, v but no other nodes.

Properties

- Triangulation
- Geometric spanner
- Allows greedy routing

Motivation	Preliminaries	Algorithm	Experiments	Conclusion
$M_{adal}(1)$				

- Model (1)
 - Only direct neighbors known

Motivation	Preliminaries	Algorithm	Experiments	Conclusion
Model (1)				

Only direct neighbors known

Motivation	Preliminaries	Algorithm	Experiments	Conclusion

Model (2)

Updates in rounds

Initial graph

Initial graph Local updates

Motivation	Preliminaries	Algorithm	Experiments	Conclusion

Problem Statement

Situation

- Start with weakly connected graph
- Nodes in general position

Problem Statement

Situation

- Start with weakly connected graph
- Nodes in general position

Task

- Converge to Delaunay graph
- Little resources (number of edges)
- Monotonous behaviour

Motivation	Preliminaries	Algorithm	Experiments	Conclusion
Trivial St	rategy			

- 1. If local incorrectness appears, calculate complete graph: O(n)
- 2. Compute Delaunay graph.

Motivation	Preliminaries	Algorithm	Experiments	Conclusion
Trivial St	rategy			

- 1. If local incorrectness appears, calculate complete graph: O(n)
- 2. Compute Delaunay graph.

Criticism

- Too many edges
- Not monotonous

Motivation	Preliminaries	Algorithm	Experiments	Conclusion	
Local Upo	late				
Compute Delaunay graph of neighbors of v .					
	b ,	b			

Motivation	Preliminaries	Algorithm	Experiments	Conclusion
Local Undato				

Local Update

Compute Delaunay graph of neighbors of v.

Motivation	Preliminaries	Algorithm	Experiments	Conclusion
Rule I (1)				

Select edges to local neighbors of v.

Motivation	Preliminaries	Algorithm	Experiments	Conclusion

Rule I (2)

Select circular edges around v.

Motivation	Preliminaries	Algorithm	Experiments	Conclusion
Rule II				

Connect local non-neighbors (nearest neighbor strategy). "Temporary edges"

Main Theorem

Theorem

Using this algorithm, any weakly connected graph G converges in $O(n^3)$ rounds to the Delaunay graph.

If G is a super graph of the Delaunay graph, it converges in O(n) rounds.

Motivation	Preliminaries	Algorithm	Experiments	Conclusion
Droof Idoa				

Proof Idea

- Delaunay edges don't disappear.
- ► Temporary edges (Rule II) shorten in each step.
- Define potential $\phi(G)$ which
 - has only $O(n^2)$ values,
 - decreases at least every n steps, and
 - ▶ is zero if and only if *G* is a super graph of the Delaunay graph.
- ▶ Superfluous edges disappear in *n* − 1 rounds.
- \Rightarrow Convergence in $O(n^3)$ rounds

Motivation	Preliminaries	Algorithm	Experiments	Conclusion
Example Pro	of			

Lemma

The only 'stable' graph is the Delaunay graph.

Proof.

- 'Stable' means 'locally triangulated'.
- 'Locally triangulated' implies planar.
- Planar and 'stable' implies triangulated.
- From any triangulation, edge flips lead to the Delaunay graph.
- \Rightarrow 'Stable' implies Delaunay graph.

Motivation	Preliminaries	Algorithm	Experiments	Conclusion
Experime	ents			

Setting

- Random graphs
- Up to 500 nodes
- Various topologies:
 - Random tree
 - Maximum spanning tree
 - Clique
 - Slightly disturbed circle

Motivation	Preliminaries	Algorithm	Experiments	Conclusion
Experime	ents			

Setting

- Random graphs
- Up to 500 nodes
- Various topologies:
 - Random tree
 - Maximum spanning tree
 - Clique
 - Slightly disturbed circle

Measurements

- Number of rounds
- Number of edges

Statistics: Runtime

Statistics: Number of edges

Motivation	Preliminaries	Algorithm	Experiments	Conclusion
Desults				

Results

- Run time much better than analysis
- Number of edges can rise in first rounds, but not too much
- Results stable for randomly distributed nodes
- High variance for CIRCLE topology

Motivation	Preliminaries	Algorithm	Experiments	Conclusion
Constant				

Conclusion

- Self-stabilizing Delaunay graph construction
- Worst case time bound: $O(n^3)$ rounds
- Experiments on random graphs:
 - Less than n rounds
 - Moderate edge growth

Open Problems

- Better bound on number of rounds
- Bounds for edge growth
- Construct worst case examples
- Alternative strategies (Rule II)
- Resolve round scheduling

Motivation	Preliminaries	Algorithm	Experiments	Conclusion

Thank you!