The CloudNets Network Virtualization Architecture

Johannes Grassler
jgrassler@inet.tu-berlin.de

05. Februar, 2014
Teil I

CloudNets Architecture
The CloudNets Ecosystem
The CloudNets Ecosystem

Based on the CloudNets virtualisation architecture and hierarchy of federated roles.
Based on the CloudNets virtualisation architecture and hierarchy of federated roles.

FleRD: a resource description language for both virtual networks and substrate networks.
The CloudNets Ecosystem

- Based on the CloudNets virtualisation architecture and hierarchy of federated roles.
- FleRD: a resource description language for both virtual networks and substrate networks.
The CloudNets Ecosystem

- Based on the CloudNets virtualisation architecture and hierarchy of federated roles.
- FleRD: a resource description language for both virtual networks and substrate networks.
- Flerdit: an editor for FleRD (currently under development)
CloudNets: Hierarchy Of Roles

Roles

<table>
<thead>
<tr>
<th>Role</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
<td>specifies and operates a service.</td>
</tr>
<tr>
<td>VNO</td>
<td>specifies and operates a VNet based on the SP's needs.</td>
</tr>
<tr>
<td>VNP</td>
<td>implements a VNet on a substrate of one or more PIPs.</td>
</tr>
<tr>
<td>PIP</td>
<td>operates a physical substrate.</td>
</tr>
</tbody>
</table>

Johannes Grassler jgrassler@inet.tu-berlin.de
The CloudNets Network Virtualization Architecture
CloudNets: Hierarchy Of Roles

Roles

SP: Service Provider
VNO: Virtual Network Operator
VNP: Virtual Network Provider
PIP: Physical Infrastructure Provider

Function

SP: specifies and operates a service.
VNO: specifies and operates a VNet based on the SP's needs.
VNP: implements a VNet on a substrate of one or more PIPs.
PIP: operates a physical substrate.
CloudNets: Hierarchy Of Roles

Roles

- SP: Service Provider

Johannes Grassler jgrassler@inet.tu-berlin.de
The CloudNets Network Virtualization Architecture
CloudNets: Hierarchy Of Roles

Roles

- SP: Service Provider
- VNO: Virtual Network Operator

Johannes Grassler jgrassler@inet.tu-berlin.de
The CloudNets Network Virtualization Architecture
CloudNets: Hierarchy Of Roles

Roles

- SP: Service Provider
- VNO: Virtual Network Operator
- VNP: Virtual Network Provider
CloudNets: Hierarchy Of Roles

Roles

- **SP**: Service Provider
- **VNO**: Virtual Network Operator
- **VNP**: Virtual Network Provider
- **PIP**: Physical Infrastructure Provider
CloudNets: Hierarchy Of Roles

<table>
<thead>
<tr>
<th>Roles</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP: Service Provider</td>
<td></td>
</tr>
<tr>
<td>VNO: Virtual Network Operator</td>
<td></td>
</tr>
<tr>
<td>VNP: Virtual Network Provider</td>
<td></td>
</tr>
<tr>
<td>PIP: Physical Infrastructure Provider</td>
<td></td>
</tr>
</tbody>
</table>
CloudNets: Hierarchy Of Roles

<table>
<thead>
<tr>
<th>Roles</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP: Service Provider</td>
<td>SP: specifies and operates a service.</td>
</tr>
<tr>
<td>VNO: Virtual Network Operator</td>
<td></td>
</tr>
<tr>
<td>VNP: Virtual Network Provider</td>
<td></td>
</tr>
<tr>
<td>PIP: Physical Infrastructure Provider</td>
<td></td>
</tr>
<tr>
<td>Roles</td>
<td>Function</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>SP: Service Provider</td>
<td>SP: specifies and operates a service.</td>
</tr>
<tr>
<td>VNO: Virtual Network Operator</td>
<td>VNO: specifies and operates a VNet based on the SP’s needs.</td>
</tr>
<tr>
<td>VNP: Virtual Network Provider</td>
<td></td>
</tr>
<tr>
<td>PIP: Physical Infrastructure Provider</td>
<td></td>
</tr>
</tbody>
</table>
CloudNets: Hierarchy Of Roles

<table>
<thead>
<tr>
<th>Roles</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP: Service Provider</td>
<td>SP: specifies and operates a service.</td>
</tr>
<tr>
<td>VNO: Virtual Network Operator</td>
<td>VNO: specifies and operates a VNet based on the SP’s needs.</td>
</tr>
<tr>
<td>VNP: Virtual Network Provider</td>
<td>VNP: implements a VNet on a substrate of one or more PIPs.</td>
</tr>
<tr>
<td>PIP: Physical Infrastructure Provider</td>
<td></td>
</tr>
</tbody>
</table>
CloudNets: Hierarchy Of Roles

<table>
<thead>
<tr>
<th>Roles</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP: Service Provider</td>
<td>SP: specifies and operates a service.</td>
</tr>
<tr>
<td>VNO: Virtual Network Operator</td>
<td>VNO: specifies and operates a VNet based on the SP’s needs.</td>
</tr>
<tr>
<td>VNP: Virtual Network Provider</td>
<td>VNP: implements a VNet on a substrate of one or more PIPs.</td>
</tr>
<tr>
<td>PIP: Physical Infrastructure Provider</td>
<td>PIP: operates a physical substrate.</td>
</tr>
</tbody>
</table>
CloudNets: Data Structures

FleRD graphs describe both substrate and VNet topologies.

Mapping Layer graphs map from VNet to substrate.

Mapping Layer graph segments VNet elements mapped to multiple substrate elements.

Johannes Grassler jgrassler@inet.tu-berlin.de

The CloudNets Network Virtualization Architecture
CloudNets: Data Structures

- FleRD graphs describe both substrate and VNet topologies.
CloudNets: Data Structures

- FleRD graphs describe both substrate and VNet topologies.
- *Mapping Layer* graphs map from VNet to substrate.
CloudNets: Data Structures

- FleRD graphs describe both substrate and VNet topologies.
- *Mapping Layer* graphs map from VNet to substrate.
- Mapping Layer graph segments VNet elements mapped to multiple substrate elements.
CloudNets: Data Structures

- FleRD graphs describe both substrate and VNet topologies.
- *Mapping Layer* graphs map from VNet to substrate.
- Mapping Layer graph segments VNet elements mapped to multiple substrate elements.

Johannes Grassler jgrassler@inet.tu-berlin.de
The CloudNets Network Virtualization Architecture
CloudNets: Data Structures

- FleRD graphs describe both substrate and VNet topologies.
- *Mapping Layer* graphs map from VNet to substrate.
- Mapping Layer graph segments VNet elements mapped to multiple substrate elements.
CloudNets: Data Structures

- FleRD graphs describe both substrate and VNet topologies.
- *Mapping Layer* graphs map from VNet to substrate.
- Mapping Layer graph segments VNet elements mapped to multiple substrate elements.
CloudNets: Data Structures

- FleRD graphs describe both substrate and VNet topologies.
- *Mapping Layer* graphs map from VNet to substrate.
- Mapping Layer graph segments VNet elements mapped to multiple substrate elements.
CloudNets: Data Structures

- FleRD graphs describe both substrate and VNet topologies.
- *Mapping Layer* graphs map from VNet to substrate.
- Mapping Layer graph segments VNet elements mapped to multiple substrate elements.
Teil II

FleRD: Flexible Resource Description
The FleRD Resource description language

Types of graphs

- UL (Underlay): describes a role’s substrate topology.
- OL (Overlay): describes a virtual network’s topology.
- ML (Mapping Layer): maps a virtual network graph to a substrate graph.

Graph structure

- Vertices: NetworkElement-Objects (NE) - both links and hosts.
- Edges: \([0, n]\) NetworkInterface Objects attached to NetworkElements.
Example: VNet With 2 Nodes

Resources:
/node/host/ RAM: 1024
/node/host/ CPU/clock: 1600
/node/host/ HDD: 20000
/node/host/ CPU/count: 2

C1: /node/host

Resources:
/interface/bw/up: 100
/interface/bw/down: 100

eth0

Resources:
/interface/bw/up: 100
/interface/bw/down: 100

network_interface

Resources:
/link/bw/upstream: 100
/link/bw/downstream: 100

L1: /link/generic

network_element

Resources:
/node/host/ RAM: 1024
/node/host/ CPU/clock: 1600
/node/host/ HDD: 20000
/node/host/ CPU/count: 2

C2: /node/host

Resources:
/interface/bw/up: 100
/interface/bw/down: 100

eth0

network_interface

network_element

Johannes Grassler jgrassler@inet.tu-berlin.de
The CloudNets Network Virtualization Architecture
The CloudNets Prototype

FleRD: Database schema with object-relational interface, graphs serialized to YAML.
LP-Solver computes VNet Embeddings.
Substrate-dependent plugins implement VNets on different kinds of physical infrastructure.

Virtualisation technologies
Host-Virtualisation: Xen and KVM.
Link-Virtualisation: Currently VLANs, OpenFlow planned.

Johannes Grassler jgrassler@inet.tu-berlin.de
The CloudNets Network Virtualization Architecture
The CloudNets Prototype

Components

FleRD: Database schema with object-relational interface, graphs serialized to YAML.

LP-Solver computes VNet Embeddings.

Substrate-dependent plugins implement VNets on different kinds of physical infrastructure.

Virtualisation technologies

Host-Virtualisation: Xen and KVM.

Link-Virtualisation: Currently VLANs, OpenFlow planned.

Johannes Grassler jgrassler@inet.tu-berlin.de
The CloudNets Prototype

Components

- FleRD: Database schema with object-relational interface, graphs serialized to YAML.
The CloudNets Prototype

Components

- FleRD: Database schema with object-relational interface, graphs serialized to YAML.
- LP-Solver computes VNet Embeddings.
The CloudNets Prototype

Components

- **FleRD**: Database schema with object-relational interface, graphs serialized to YAML.
- **LP-Solver** computes VNet Embeddings.
- **Substrate-dependent plugins** implement VNets on different kinds of physical infrastructure.

Johannes Grassler
jgrassler@inet.tu-berlin.de
The CloudNets Network Virtualization Architecture
The CloudNets Prototype

Components

- FleRD: Database schema with object-relational interface, graphs serialized to YAML.
- LP-Solver computes VNet Embeddings.
- Substrate-dependent plugins implement VNs on different kinds of physical infrastructure.

Virtualisation technologies
The CloudNets Prototype

Components

- FleRD: Database schema with object-relational interface, graphs serialized to YAML.
- LP-Solver computes VNet Embeddings.
- Substrate-dependent plugins implement VNets on different kinds of physical infrastructure.

Virtualisation technologies

- Host-Virtualisation: Xen and KVM.
The CloudNets Prototype

Components

- FleRD: Database schema with object-relational interface, graphs serialized to YAML.
- LP-Solver computes VNet Embeddings.
- Substrate-dependent plugins implement VNets on different kinds of physical infrastructure.

Virtualisation technologies

- Host-Virtualisation: Xen and KVM.
- Link-Virtualisation: Currently VLANs, OpenFlow planned.

Johannes Grassler jgrassler@inet.tu-berlin.de
The CloudNets Network Virtualization Architecture
Life cycle of a VNet request

Johannes Grassler jgrassler@inet.tu-berlin.de
The CloudNets Network Virtualization Architecture
Substrate on the VNP level

PIP1

PIP2

Johannes Grassler jgrassler@inet.tu-berlin.de
The CloudNets Network Virtualization Architecture
Substrate on the VNP level

The CloudNets Network Virtualization Architecture
Substrate on the VNP level

Johannes Grassler jgrassler@inet.tu-berlin.de

The CloudNets Network Virtualization Architecture
Mapping on the VNP level
Mapping on the VNP level
Mapping on the VNP level

Johannes Grassler jgrassler@inet.tu-berlin.de
The CloudNets Network Virtualization Architecture
Mapping on the VNP level

The CloudNets Network Virtualization Architecture
Try cloudnets-framework!

Source available on our project page

https://projects.inet.tu-berlin.de/projects/cloudnets-framework/

Johannes Grassler jgrassler@inet.tu-berlin.de
The CloudNets Network Virtualization Architecture
Thank You!