Self-Stabilization
Self-Stabilization

We have seen: LOCAL algorithms can be run in asynchronous environments. **Today:** LOCAL algorithms can also be made very robust, namely self-stabilizing!
Example: A Fault-Tolerant Concert for the Mayor

Musicians are arranged in a graph. Can see neighbors only.
Example: A Fault-Tolerant Concert for the Mayor

Setting:
- Play “happy birthday” again and again
- Wind changes pages
- Musicians can only observe immediate neighbors

Goal:
- When wind stops, harmonize eventually!
Example: A Fault-Tolerant Concert for the Mayor

Setting:
- Play “happy birthday” again and again
- Wind changes pages
- Musicians can only observe immediate neighbors

Goal:
- When wind stops, harmonize eventually!

Algorithm to achieve this?
Example: A Fault-Tolerant Concert for the Mayor

Idea 1: If out of sync, just change to the page of a nearby player!

Setting:
- Play “happy birthday” again and again
- Wind changes pages
- Musicians can only observe immediate neighbors

Goal:
- When wind stops, harmonize eventually!
Example: A Fault-Tolerant Concert for the Mayor

Setting:
- Play “happy birthday” again and again
- Wind changes pages
- Musicians can only observe immediate neighbors

Goal:
- When wind stops, harmonize eventually!

Algorithm to achieve this?

Idea 1: If out of sync, just change to the page of a nearby player!

But what if the neighbour does the same with his neighbor? May never converge!
A Concert for the Mayor

But what if the neighbour does the same with his neighbor? May never converge!

Idea 1: If out of sync, just change to the page of a nearby player!

Idea 2: Go to start when asynchrony detected!

Setting:
- Play “happy birthday” again and again
- Wind changes pages
- Musicians can only observe immediate neighbors

Goal:
- When wind stops, harmonize eventually!

Algorithm to achieve this?
A Concert for the Mayor

Setting:
- Play “happy birthday” again and again
- Wind changes pages
- Musicians can only observe immediate neighbors

Goal:
- When wind stops, harmonize eventually!

Algorithm to achieve this?

Idea 1: If out of sync, just change to the page of a nearby player!

Idea 2: Go to start when asynchrony detected!

But what if the neighbour does the same with his neighbor? May never converge...

But players further away detect it later and restart later! May never converge…
Self-Stabilization: A Powerful Concept in Fault-Tolerance
Self-Stabilization

Self-stabilizing algorithms pioneered by Dijkstra (1973): for example self-stabilizing mutual exclusion.

“I regard this as Dijkstra’s most brilliant work. Self-stabilization is a very important concept in fault tolerance.”

Leslie Lamport (PODC 1983)
Self-Stabilization: A Powerful Concept in Fault-Tolerance

The Vision:
A distributed system is self-stabilizing if, starting from an arbitrary initial state, it is guaranteed to converge to a legitimate state. If the system is in a legitimate state, it is guaranteed to remain there, provided that no further faults happen. A state is legitimate if the state satisfies the specifications of the distributed system.
The Classic: Self-Stabilizing Token Ring

token
The Classic: Self-Stabilizing Token Ring

(Eventual) goal: A single token, circulating. E.g., mutual exclusion!
The Classic: Self-Stabilizing Token Ring

(Initial) goal: A single token, circulating. E.g., mutual exclusion!

Assume: ring orientation is given.
The Classic: Self-Stabilizing Token Ring

(Eventual) goal: A single token, circulating. E.g., mutual exclusion!

Assume: ring orientation is given.

Assume: leader node given, and n known.
Note, given orientation, we can use the notion of child and parent.
Adversary Model

Adversary may add and remove many tokens anytime!
Adversary Model

Adversary may add and remove many tokens anytime!

Possible initial configuration!
Distributed algorithm that self-stabilizes to a single rotating token?

Adversary may add and remove many tokens any time!

Possible initial configuration!
Idea: Each node is in a state $S=\{1,\ldots,n\}$. Each node informs its child continuously about its state.
Example

Idea: Each node is in a state \(S = \{1, \ldots, n\} \). Each node informs its child continuously about its state.
Our self-stabilizing algorithm will ensure there are only two numbers, at the Changing point denotes the token!

Idea: Each node is in a state $S=\{1,\ldots,n\}$. Each node informs its child continuously about its state.

Example
Our self-stabilizing algorithm will ensure there are only two numbers, at the Changing point denotes the token!

Example

Idea: Each node is in a state $S=\{1,\ldots,n\}$. Each node informs its child continuously about its state.
Our self-stabilizing algorithm will ensure there are only two numbers, at the Changing point denotes the token!

Token Ring

If $v = v_0$ then
 If $S(v) = S(c)$ then
 $S(v) := S(v) + 1 \pmod{n}$
 End If
Else $S(v) := S(c)$
Our self-stabilizing algorithm will ensure there are only two numbers, at the Changing point denotes the token!

If $v = v_0$ then
If $S(v) = S(c)$ then
$S(v) := S(v) + 1 \pmod n$
End If
Else $S(v) := S(c)$

Example
Our self-stabilizing algorithm will ensure there are only two processors, at the changing point denotes the token!

Example

If $S(v) = S(c)$ then
If $S(v) = S(c)$ then
$S(v) := S(v) + 1 \pmod{n}$
End If
Else $S(v) := S(c)$
End If

Simply forward the value!
Our self-stabilizing algorithm will ensure there are only two numbers, at the changing point "token!"

Example

The leader chooses next ID, everyone else simply forwards!

If \(S(v) = S(c) \):
- Increment!

If \(v = v_0 \) then
- If \(S(v) = S(c) \) then
 - \(S(v) := S(v) + 1 \pmod{n} \)
- \(\text{End If} \)
- Else \(S(v) := S(c) \)

Simply forward the value!
Token Ring

The algorithm stabilizes correctly.

1. eventually, each node copies from its child: same value throughout the ring.
Token Ring

The algorithm stabilizes correctly.

1. eventually, each node copies from its child: same value throughout the ring.
Token Ring

The algorithm stabilizes correctly.

1. eventually, each node copies from its child: same value throughout the ring.
Token Ring

The algorithm stabilizes correctly.

1. eventually, each node copies from its child: same value throughout the ring.
Token Ring

The algorithm stabilizes correctly.

1. eventually, each node copies from its child: same value throughout the ring.

2. Root chooses next larger value only once even the last child received the old leader value.
Eventually:
- The leader will reach a state s that no other node had at time t_0. (There are n nodes and n states.)
- Then one node after the other will learn the current state of the leader.
- The leader itself does not push the next value until the previous value travelled the entire ring!
- At most one node active at any time: Token passed implicitly with the switching state.

larger value only once even the last child received the old leader value.
Eventually:

- The leader will reach a state s that no other node had at time t_0. (There are n nodes and n states.)
- Then one node after the other will learn the current state of the leader.
- The leader itself does not push the next value until the previous value travelled the entire ring!
- At most one node active at any time: Token passed implicitly with the switching state.

So the system “stabilizes” after at most n time units after the leader increased the value: from then on, a unique “value change” cycles the ring.
Self-Stabilizing Independent Sets

How to design self-stabilizing Maximal Independent Sets?
Self-Stabilizing Independent Sets

How to design self-stabilizing Maximal Independent Sets?

Remember algorithm:
Join MIS if all higher-ID neighbors did not.
How to design self-stabilizing Maximal Independent Sets?

Idea: Make it self-stabilizing by executing this continuously!

Remember algorithm: Join MIS if all higher-ID neighbors did not.
Self-Stabilizing Independent Sets

Assume: node have unique IDs

Independent Sets

Every node v executes the following code:
1: do atomically (forever)
2: Leave MIS if a neighbor with a larger ID is in the MIS
3: Join MIS if no neighbor with larger ID joins MIS
4: Send (node ID, MIS or not MIS) to all neighbors
5: end do
Self-Stabilizing Independent Sets

Assume: node have unique IDs

Independent Sets

Every node v executes the following code:

1: do atomically (forever)
2: Leave MIS if a neighbor with a larger ID is in the MIS
3: Join MIS if no neighbor with larger ID joins MIS
4: Send (node ID, MIS or not MIS) to all neighbors
5: end do

Why does it work? For same reason as before: eventually, highest-ID node will make decision, then its neighbors, then…
Assume: node have unique IDs

Self-Stabilizing Independent Sets

Every node \(v \) executes the following code:

1. do atomically (forever)
2. Leave MIS if a neighbor with a larger ID is in the MIS
3. Join MIS if no neighbor with larger ID joins MIS
4. Send (node ID, MIS or not MIS) to all neighbors
5. end do

Why does it work? For same reason as before: eventually, highest-ID node will make decision, then its neighbors, then…

Can we make any LOCAL algorithm self-stabilizing? E.g., coloring, matching, …?
Self-Stabilizing Independent Sets

Assume: node have unique IDs

Every node v executes the following code:

1: do atomically (forever)
2: Leave MIS if a neighbor with a larger ID is in the MIS
3: Join MIS if no neighbor with larger ID joins MIS
4: Send (node ID, MIS or not MIS) to all neighbors
5: end do

Why does it work? For same reason as before: eventually, highest-ID node will make decision, then its neighbors, then…

Yes! Automatic transformation.

Can we make any LOCAL algorithm self-stabilizing? E.g., coloring, matching, …?
Given:
Deterministic k-round LOCAL algorithm A.

Output:
k-round self-stab LOCAL algorithm, i.e.:
- if the adversary does not corrupt the system for k time units, the solution is stable
- if the adversary does not corrupt any node or message closer than distance k from a node u, node u will be stable (locality)
Idea: simulate all k-rounds in parallel! Annotate messages with round they belong to, and keep them in different tables for each round: local variables of the last k rounds.

Given:

Deterministic k-round LOCAL algorithm A.

A.k.a. *local checking*. Proof by *induction*: after t_0, round 1 variables and messages will be correct, then round 2 variables and messages, then …

- if the adversary does not corrupt the system for k time units, the solution is stable
- if the adversary does not corrupt any node or message closer

It is automatic: from Art to Craft!
Advanced Stabilization

Sometimes stabilization is not to a fixed state but to a cyclic state! E.g., token ring. Here comes another example!
Advanced Stabilization

In a little town, each evening citizens call their friends to ask whether they vote for **Democrats or Republicans**. Then they decide themselves for **majority** (assume odd number of friends).

Does this system «converge» or «stabilize»?
In a little town, each evening citizens call their friends to ask whether they vote for Democrats or Republicans. Then they decide themselves for the majority (assume odd number). Does this system «converge» or «stabilize»?
Example

t:

\[
\begin{array}{c}
\text{t:} \\
\text{t+1:}
\end{array}
\]
Example

t:

\[t+1: \]

\[
\begin{array}{c}
\text{Example} \\

t: \\
\text{t+1:}
\end{array}
\]
Example

t: majority of red...

$t+1$: ... so red.
What do you think?

- Is eventually everybody voting for the same party?
- Will each citizen eventually stay with the same party?
- Will citizens that stayed with the same party for some time, stay with that party forever?
- And if their friends also constantly root for the same party?
- Will this beast stabilize at all? 😊
What do you think?

- Is eventually everybody voting for the same party?

- Will each citizen eventually stay with the same party?

- Will citizens that stayed with the same party for some time, stay with that party forever?

- And if their friends also constantly root for the same party?

- Will this beast stabilize at all?

No, no, no! 😊
Democrats / Republicans

Eventually each citizen will vote for the same party every other day.

Why?
Democrats / Republicans

Eventually each citizen will vote for the same party every other day.

Why?

- **Friendship** = directed edges
- **Bad edge**: to node which does not follow the advisor’s opinion on next day!
- See example!
Democrats / Republicans

Eventually each citizen will vote for the same party every other day.

Why?

- Friendship = directed edges
- **Bad edge**: to node which does not follow the advisor’s opinion on next day!
- See example!
Democrats / Republicans

Eventually each citizen will vote for the same party every other day.

- Consider a citizen c (Democrat) with g good and b bad out-edges on a day t (= will be c resp. not c at $t+1$)
- Degree of citizen c is hence $g+b$.
- So g friends of c root for the Democrats on day $t+1$, and b friends root for the Republicans
- So in evening of $t+1$, c will receives g recommendations for Democrats, and b for Republicans.
- So what will citizen vote at day $t+2$?
- If $g>b$ at t, then same again, otherwise opposite
Democrats / Republicans

Eventually each citizen will vote for the same party every other day.

- Consider a citizen c (Democrat) with g good and b bad out-edges on a day t (= will be c resp. not c at $t+1$)
- Degree of citizen c is hence $g+b$.
- So g friends of c root for the Democrats on day $t+1$.
- So in evening of $t+1$, c will receive g recommendations for Democrats and b for Republicans.
- But number of bad edges can change over time! Namely reduce!
- So in evening of $t+1$, c will receive g recommendations for Democrats and b for Republicans.
- So in evening of $t+1$, c will receive g recommendations for Democrats and b for Republicans.
- So what will citizen c vote at day $t+2$?
- If $g>b$ at t, then same again, otherwise opposite
Democrats / Republicans

Eventually each citizen will vote for the same party every other day.

Continued…

g>b: same party

t:

\[
\begin{array}{c}
\text{t:} \\
\end{array}
\]

g<b: opposite party

t:

\[
\begin{array}{c}
\text{t:} \\
\end{array}
\]

t+2:

\[
\begin{array}{c}
\text{t+2:} \\
\end{array}
\]

t+2:
Democrats / Republicans

Eventually each citizen will vote for the same party every other day.

Continued…: if \(g > b \)

- At day \(t+1 \), (blue) citizen \(c \):
 - \(g > b \) neighbors blue, \(b \) red

- So citizen \(c \) will be blue (still/again) at \(t+2 \)

- So \(b \) (red) neighbors pointing to \(c \) are bad at \(t+1 \)
 (from neighbor’s perspective), since \(c \) will be blue at \(t+2 \).

Bad out-edges of \(c \) at time \(t \) will be bad edges to \(c \) at time \(t+1 \)! Total number of bad edges remains the same. (No matter what color of \(c \) is at time \(t+1 \).)
Democrats / Republicans

Eventually each citizen will vote for the same party every other day.

Continued…: if $b > g$

- At day $t+1$, (blue) citizen c:
 - $b > g$ neighbors blue, g red

- So citizen c will be red at $t+2$

- So $g < b$ (blue) neighbors pointing to c are bad at $t+1$ (from neighbor’s perspective), since c will be red at $t+2$.

Bad out-edges of c at time t will be good edges to c at time $t+1$! Total number of bad edges decreases. (No matter what color of c is at time $t+1$.)
Democrats / Republicans

Eventually each citizen will vote for the same party every other day.

Continued:

- In both cases, the number of bad edges does not increase.

- In fact, it decreases if any node switches the party.

- Since the number of bad edges cannot be negative, the system will stabilize for a certain number of bad edges.

- Once number of bad edges stabilized, each node either stabilizes to a party or switches back and forth between times t and t+2.

QED
What kind of equilibrium is this?

- Is eventually everybody voting for the same party? No.
- Will each citizen eventually stay with the same party? No.
- Will citizens that stayed with the same party for some time, stay with that party forever? No.
- And if their friends also constantly root for the same party? No.
Related to Conway’s Game of Life

- Turing-complete game: LIFE
- 2d cell grid, each cell dead or alive
- Every cell interacts with its eight neighbors:
 - Any live cell with fewer than two live neighbors dies (loneliness).
 - Any live cell with more than three live neighbors dies, as if by overcrowding.
 - Any live cell with >2 live neighbors lives on to the next generation.

Can model complex things: gun + glider:
End of Lecture
Discussion

- How to do it for randomized algorithms?
 - Do not know \(k \), the number of rounds!
 - But can just simulate more rounds, no problem.
 - Careful about adversary: should not compromise randomness of choices (e.g., have nodes produce random bits until it’s what he wanted)
 - Problem: can also not just stick to given random choices once and forever! Adversary may have corrupted the variables before.

- Some additional memory overhead, but usually bearable.
 - Memory overhead depends on \(k \), the number of rounds, which is low.

- Good for mobile environments: if \(k \)-neighborhood does not change, nothing changes