Distributed Synchronization

«A man with one clock knows what time it is – a man with two is never sure.»
The LOCAL Model: A Synchronous Model

Synchronous LOCAL algorithms simple to design and reason about:

Send...

... receive...

... compute.
Synchronous LOCAL algorithms simple to design and reason about:

But how to render an asynchronous system synchronous? Run LOCAL algorithm in asynchronous environment: need a **distributed synchronizer**!
The LOCAL Model: A Synchronous Model

Synchronous algorithms simple to design and reason about:

Send... but how to render an asynchronous system synchronous? Run LOCAL algorithm in asynchronous environment: need a **distributed synchronizer**.

Remember BFS: artificially synchronized protocol to make it use less messages in the worst case!... compute.
Synchronizer

A synchronizer is a distributed algorithm which generates clock pulses (PULSE) at each node.
Definitions

Synchronizer

A synchronizer is a distributed algorithm which generates clock pulses (PULSE) at each node.

Valid Clock Pulse

A pulse generated at some node v is valid, iff it is generated after v received all the messages of the synchronous algorithm sent to v by its neighbors in the previous pulses.
Definitions

Synchronizer

A synchronizer is a distributed algorithm which generates clock pulses (PULSE) at each node.

Valid Clock Pulse

A pulse generated at some node v is valid, iff it is generated after v received all the messages of the synchronous algorithm sent to v by its neighbors in the previous pulses.
Definitions

Synchronizer

A synchronizer is a distributed algorithm which generates clock pulses (PULSE) at each node.

Valid Clock Pulse

A pulse generated at some node v is valid, iff it is generated after v received all the messages of the synchronous algorithm sent to v by its neighbors in the previous pulses.

How to implement a synchronizer efficiently?

Efficient = Runtime and Message Complexity „almost like in the LOCAL model“. Don‘t want to send messages just for the sake of synchronization.
Formally: Overhead of Using Synchronizers

Overhead: Message needed for each pulse, independent of protocol data!

Overhead

Say $T(A)$ and $M(A)$ are time and message complexity of synchronous algorithm A, and $T(S)$ and $M(S)$ are complexities of a synchronizer for each pulse. Moreover, $T_{\text{init}}(S)$ and $M_{\text{init}}(S)$ to set up synchronizer. Then:

$$T = T_{\text{init}}(S) + T(A)*(1+T(S)), \ M = M_{\text{init}}(S) + M(A) + T(A)*M(S)$$

Some setup costs maybe.

Each round: additionally costs time $T(S)$ and messages $M(S)$.
Definitions

Safe Node

A node v is *safe* wrt certain clock pulse if all messages of the synchronous algorithm sent by v in that pulse have already arrived *at their destination*.

Idea: v at least knows what it sent itself!

v not safe wrt 10

v safe wrt 10
Definitions

Safe Node

A node v is **safe** wrt certain clock pulse if all messages of the synchronous algorithm sent by v in that pulse have already arrived **at their destination**.

Note: at this point, v cannot know that it is actually safe. Need ACKs to detect!

v not safe wrt 10

v safe wrt 10
Definitions

Safe Node

A node v is *safe* wrt certain clock pulse if all messages of the synchronous algorithm sent by v in that pulse have already arrived *at their destination*.

- Note: at this point, v cannot know that it is actually safe.
- Need ACKs to detect!
- Note: Once all neighbors of v are safe, v can generate the next pulse: it has received their messages for this round. This pulse must be valid.

v safe wrt 10
Safe Node

A node v is safe wrt certain clock pulse if all messages of the synchronous algorithm sent by v in that pulse have already arrived at their destination.

Note: at this point, v cannot know that it is actually safe. Need ACKs to detect!

Note: Once all neighbors of v are safe, v can generate the next pulse: it has received their messages for this round. This pulse must be valid.
The Local Synchronizer α

Synchronizer α

At node v:
- wait until v is safe (learn via ACKs)
- send SAFE to all neighbors
- wait until v receives SAFE messages from all neighbors
- start new PULSE

Overhead?
The Local Synchronizer α

Synchronizer α

At node v:
- wait until v is safe (learn via ACKs)
- send SAFE to all neighbors
- wait until v receives SAFE messages from all neighbors
- start new PULSE

Good: just $O(1)$ interactions with neighbors: no initialization and local!

Overhead per synchronous round:
- $T(\alpha) = O(1)$
- $M(\alpha) = O(m)$
The Local Synchronizer α

Synchronizer α

At node v:
- wait until v is safe (learn via ACKs)
- send SAFE to all neighbors
- wait until v receives SAFE messages from all neighbors
- start new PULSE

Good: just $O(1)$ interactions with neighbors: no initialization and local!

Not so good: *Every edge sees 6 messages* (PULSE, SAFE, ACK in both directions), in each round!

Overhead per synchronous round:
- $T(\alpha) = O(1)$
- $M(\alpha) = O(m)$
The Local Synchronizer α

Synchronizer α

At node v:
- wait until v is safe (learn via ACKs)
- send SAFE to all neighbors
- wait until v receives SAFE messages from all neighbors
- start new PULSE

Overhead per synchronous round:
- $T(\alpha) = O(1)$
- $M(\alpha) = O(m)$

Good: just $O(1)$ interactions with neighbors: no initialization and local!

Not so good: Every edge sees 6 messages (PULSE, SAFE, ACK in both directions), in each round!

The global synchronizer β provides the opposite tradeoff!
The Global Synchronizer β

Idea: make global rounds: leader coordinates global phases. Like in our BFS algorithm.
The Global Synchronizer β

Aggregate: round i done? All children safe?
The Global Synchronizer β

Along spanning tree: $O(n)$ messages.

Aggregate: round i done? All children safe?
The Global Synchronizer β

Okay, then PULSE! Start next round!
Synchronizer β

At node v:

wait until v is safe
wait until v receives SAFE message from all its children in tree
only then send SAFE message to parent in T
wait until PULSE received from parent
send PULSE to children
start PULSE
Synchronizer β

At node v:
- wait until v is safe
- wait until v receives SAFE message from all its children in tree
- only then send SAFE message to parent in T
- wait until PULSE received from parent
- send PULSE to children
- start PULSE

Synchronizer β

Complexities per synchronous round:
- $T(\beta) = O(\text{diam } T) = O(n)$
- $M(\beta) = O(n)$
Synchronizer β

At node v:
- wait until v is safe
- wait until v receives SAFE message from all its children in tree
- only then send SAFE message to parent in T
- wait until PULSE received from parent
- send PULSE to children
- start PULSE

Expensive: non-local convergecarts in each round!

Complexities per synchronous round:
- $T(\beta) = O(\text{diam } T) = O(n)$
- $M(\beta) = O(n)$

Cheap: convergecarts along spanning tree edges only!

Plus initialization: leader election!
A Tradeoff:

Synchronizer α

Overhead per synchronous round:
- $T(\alpha) = O(1)$
- $M(\alpha) = O(m)$

Fast but many messages.

Synchronizer β

Complexities per synchronous round:
- $T(\beta) = O(\text{diam } T) = O(n)$
- $M(\beta) = O(n)$

Slow but message efficient.

Can we get the best of both worlds?
A Tradeoff:

Synchronizer \(\alpha \)

Overhead per synchronous round:
- \(T(\alpha) = O(1) \)
- \(M(\alpha) = O(m) \)

Fast but many messages.

Slow but message efficient.

Not so bad in sparse graphs!

Synchronizer \(\beta \)

Complexities per synchronous round:
- \(T(\beta) = O(\text{diam } T) = O(n) \)
- \(M(\beta) = O(n) \)

Not so bad in low diameter graphs!

Can we get the best of both worlds?
A Tradeoff:

Synchronizer \(\alpha \)

Overhead per synchronous round:

\[T(\alpha) = O(1) \]
\[M(\alpha) = O(m) \]

- Fast but many messages.
- Not so bad in sparse graphs!

Idea: partition the network into low-diameter clusters with sparse interconnections! Inside: can use \(\beta \) synchronizer (runtime not critical), across cluster can use \(\alpha \) synchronizer (messages not critical)!

Can we get the best of both worlds?
The Hybrid Synchronizer γ

Idea: Execute β intra- and α inter-cluster
The Hybrid Synchronizer γ

Idea:

Partition network into small-diameter clusters.
The Hybrid Synchronizer γ

Idea:

Partition network into small-diameter clusters.

Dense but small diameter, so diameter time no problem: synchronizer β (with BFS tree)!
The Hybrid Synchronizer γ

Idea:

Between clusters, local synchronizer α!
(See it as graph where clusters collapsed.)

Partition network into small-diameter clusters.
The Hybrid Synchronizer γ

Idea:

Each cluster has leader and BFS spanning tree!

Cluster leaders responsible for β synchronizer convergecast
Edge Types in the Hybrid Synchronizer γ

Idea:

- **Intra-cluster tree edge**
- **Intra-cluster edge** (not tree)
- **Inter-cluster edge**
- **Edge between clusters**
The Hybrid Synchronizer γ

Idea:

Partition network into small-diameter clusters.

Cluster safe if all its nodes safe.

Idea: First make cluster safe, then make inter-cluster safe.
The Hybrid Synchronizer γ

Idea:
1. Phase 1: Apply Synchronizer β in each cluster; when done inform leaders in neighbor clusters
2. Phase 2: Generate next pulse when neighbor clusters are safe (Synchronizer α)

Synchronizer γ

For node v:
- wait until v is safe
- wait until v receives SAFE from all children in intra-cluster tree
- send SAFE to parent in tree
- wait for CLUSTERSAFE message from parent
- send CLUSTERSAFE to children
- wait until NEIGHBORSAFE received from all incident inter-cluster edges and children in intra-cluster
- send NEIGHBORSAFE to parent
- wait for PULSE and forward

Idea: First make cluster safe, then make inter-cluster safe.
Synchronizer γ

Let m_c be the number of inter-cluster edges and let k be the maximum cluster radius (max dist leaf to leader). Then:

$T(\gamma) = O(k)$

$M(\gamma) = O(n + m_c)$

Global synchronizer time at most the cluster radius!

Local synchronizer for inter cluster at most many m_c messages. Intra-cluster along spanning tree at most n.
Complexity

Synchronizer γ

Let m_c be number of inter-cluster edges and let k be the maximum cluster radius (max dist leaf to leader).

Then:

$T(\gamma) = O(k)$

$M(\gamma) = O(n+m_c)$

Global synchronizer time at most the cluster radius!

Local synchronizer for inter cluster at most many m_c messages. Intra-cluster along spanning tree at most n.

How to cluster the network so that m_c and k are minimal?
Idea: grow clusters one by one!

Greedily grow cluster as long as increasing the radius gives many new nodes: a growth of at least a factor \(\rho \). So likely to have low diameter and little edges at edge once we stop!
Cluster Construction

while unprocessed nodes:
 select arbitrary unprocessed node v
 $r:=0$
 while $|B(v,r+1)| > \rho \times |B(v,r)|$ do
 $r := r+1$
 end while
 makeCluster($B(v,r)$)
end while

Idea:
1. Construct one cluster after another; start cluster at random non-covered node
2. Grow as long as “growth significant” (factor ρ)
Define: $B(v,r)$ = Ball of radius r around v
Quality of Partition

Partition Properties

The resulting network partition:

1. consists of clusters of radius at most \(\log_\rho n \)
2. at most \((\rho - 1) \times n\) intercluster edges
Radius grows only if cluster size increases by factor ρ. As there are at most n nodes, this can happen at most $\log_\rho n$ times.

Partition Properties

The resulting network partition:

1. consists of clusters of radius at most $\log_\rho n$
2. at most $(\rho - 1)n$ intercluster edges
Radius grows only if cluster size increases by factor \(\rho \). As there are at most \(n \) nodes, this can happen at most \(\log_\rho n \) times.

Partition Properties

The resulting network partition:

1. consists of clusters of radius at most \(\log_\rho n \)
2. at most \((\rho - 1) n\) intercluster edges

We know that for ball \(B \):

\[|B(v, r+1)| \leq \rho \cdot |B(v, r)| \]

So the size of the “border of the cluster” is at most

\[|B(v, r+1) \setminus B(v, r)| \leq \rho \cdot |C| - |C| \]

Summing over all clusters (\(n \) nodes in total, in worst case each one is a cluster):

\[\sum (\rho - 1) \cdot |C| = (\rho - 1) \cdot \sum |C| = (\rho - 1) \cdot n \]
Quality of Partition

Partition Properties

The resulting network partition:
(1) consists of clusters of radius at most $\log_\rho n$
(2) at most $(\rho - 1)n$ intercluster edges

Asymptotically optimal tradeoff!
Quality of Partition

Partition Properties

The resulting network partition:

1. consists of clusters of radius at most $\log_{\rho} n$
2. at most $(\rho - 1) n$ intercluster edges

Asymptotically optimal tradeoff!

Example: $\rho = 2$

$\log(n)$ time synchronization overhead, but only $O(n)$ inter-cluster edges (messages)

Example: $\rho = n^{1/k}$

k time overhead, $O(n^{1+1/k})$ inter-cluster edges
End of Lecture