Charting the Complexity Landscape of Waypoint Routing

Saeed Akhoondian Amiri1 Klaus-Tycho Foerster2 Riko Jacob3 Stefan Schmid2

1 TU Berlin, Germany 2 Aalborg University, Denmark 3 IT University of Copenhagen, Denmark

Abstract—Modern computer networks support interesting new routing models in which traffic flows from a source s to a destination t can be flexibly steered through a sequence of waypoints, such as (hardware) middleboxes or (virtualized) network functions, to create innovative network services like service chains or segment routing. While the benefits and technological challenges of providing such routing models have been articulated and studied intensively over the last years, much less is known about the underlying algorithmic traffic routing problems. This paper shows that the waypoint routing problem features a deep combinatorial structure, and we establish interesting connections to several classic graph theoretical problems. We find that the difficulty of the waypoint routing problem depends on the specific setting, and chart a comprehensive landscape of the computational complexity. In particular, we derive several NP-hardness results, but we also demonstrate that exact polynomial-time algorithms exist for a wide range of practically relevant scenarios.

I. INTRODUCTION

A. The Motivation: Service Chaining and Segment Routing

We currently witness two trends related to the increasing number of middleboxes (e.g., firewalls, proxies, traffic optimizers, etc.) in computer networks (in the order of the number of routers1): First, there is a push towards virtualizing middleboxes and network functions, enabling faster and more flexible deployments (not only at the network edge), and reducing costs. Second, over the last years, innovative new network services have been promoted by industry and standardization institutes2, by composing network functions to service chains3, 4, 5. The benefits and technological challenges of implementing such more complex network services have been studied intensively, especially in the context of Software-Defined Networks (SDNs) and Network Function Virtualization (NFV), which introduce unprecedented flexibilities on how traffic can be steered through flexibly allocated network functions.

However, much less is known today about the algorithmic challenges underlying the routing through such middleboxes or network functions, henceforth simply called waypoints. In a nutshell, the underlying algorithmic problem is the following: How to route a flow (of a certain size) from a given source s to a destination t, via a sequence of k waypoints (w_1, \ldots, w_k)? The allocated flow needs to respect capacity constraints, and ideally, be as short as possible.

The problem can come in many different flavors, depending on whether a shortest or just a feasible route needs to be computed, depending on the number k of waypoints, depending on the type of the underlying network (e.g., directed vs undirected, Clos vs arbitrary topology), etc. Moreover, as middleboxes provide different functionality (mostly security and performance related), waypoints may or may not be flow-conserving: e.g., a tunnel entry point may increase the packet size (by adding an encapsulation header) whereas a wide-area network optimizer may decrease the packet size (by compressing the packet).

The goal of this paper is to provide a better understanding of the applicable algorithmic techniques in the different variants of the waypoint routing problem, as well as to explore limitations due to computational intractability.

B. The Problem: Waypoint Routing

More formally, the inputs to the waypoint routing problem are:

1) A network: represented as a graph $G = (V, E)$, where V is the set of $n = |V|$ switches/routers/middleboxes (i.e., the nodes) and where the set E of $m = |E|$ links can either be undirected or directed, depending on the scenario. Moreover, each link $e \in E$ may have a bandwidth capacity $c(e)$ and weights $\omega(e)$ (describing costs), both non-negative. If not stated otherwise, we assume that $c(e) = 1$ and $\omega(e) = 1$ for all $e \in E$.

2) A source-destination pair (s, t) and a sequence of waypoints (w_1, \ldots, w_k): which need to be traversed along the way from s to t, forming a route (s, w_1, \ldots, w_k, t). Unless specified otherwise, we will assume at most one waypoint per node, though it may be that $s = t$. Waypoints may also change the traffic rate: We will denote the demand from s to w_1 by d_0, from w_1 to w_2 by d_1, etc. That said, if not stated explicitly otherwise, we will assume that $d_0 = d_1 = \ldots = d_k = 1$, and refer to this scenario as flow-conserving.

In general, we are interested in shortest routes (an optimization problem), i.e., routes of minimal length $|R|$, such that link capacities are respected. However, we also consider the feasibility of such routes: is it possible to route such a flow without violating link capacities at all (a decision problem)? Sometimes, minimizing the total route length alone may not be enough, but additional, hard constraints on the distance (or stretch) between a terminal and a waypoint or between waypoints may be imposed.
C. Novelty: It's a walk!

We will show that the waypoint routing problem is related to some classic and deep combinatorial problems, in particular the disjoint path problem [5], [7], [8] and the k-cycle problem [9]. In contrast to these problems, however, the basic waypoint routing problem considered in this paper comes with a fundamental twist: routes are not restricted to form simple paths, but can rather form arbitrary walks, as long as capacity constraints in the underlying network are respected. Indeed, often feasible routes do not exist if restricted to a simple path, see Fig. 1 for an example in which any feasible route must contain a loop.

![Diagram](image)

Fig. 1. A route (s, w, t) in the depicted network must contain a loop. The only solution is the walk s, w, s, t, resulting from the concatenation of the red (s, w) path and the blue (w, t) path. It can hence not be described as a simple path.

The problem is non-trivial. For example, consider the seemingly simple problem of routing via a single waypoint, i.e., a route of the form (s, w, t). A naive algorithm could try to first compute a shortest path from s to w, deduct the resources consumed along this path, and finally compute shortest path (subject to capacity constraints) from w to t on the remaining graph. However, as we will see shortly, such a greedy algorithm is doomed to fail; rather, route segments between endpoints and waypoints must be jointly optimized.

D. Our Contributions

This paper initiates the algorithmic study of the waypoint routing problem underlying many modern applications, such as service chaining [3] (where traffic needs to be steered through network functions), hybrid SDNs [10] (where traffic steered through OpenFlow switches) or in segment routing [11] (where MPLS labels are updated at segment endpoints).

We show that whether and how efficiently a feasible or shortest waypoint route can be found depends on the scenario, and chart a complexity landscape of the waypoint routing problem, presenting a comprehensive set of NP-hardness results and efficient algorithms for different scenarios. In particular, we establish both simple and non-trivial reductions from resp. to classic combinatorial problems, and also derive several new algorithms from scratch which may be of interest beyond the scope of this paper.

In summary, we make the following contributions. For a single waypoint ($k = 1$), we show the following:

1) **Waypoint routes can be computed efficiently on undirected graphs**: We establish a connection to the classic disjoint paths problem, but show that while the 2-disjoint paths problem is notoriously hard and continues to puzzle researchers [6], a route via a single waypoint can in fact be computed very efficiently.

2) **Waypoints which change the flow size are challenging**: We show that routing through a single waypoint is NP-hard in general if the waypoint changes the flow. This can be seen as an interesting new insight into the classic 2-disjoint paths problem as well.

3) **Directed links make it hard as well**: While we describe fast algorithms for undirected networks, the waypoint routing problem turns out to be NP-hard already for a single waypoint on directed graphs.

4) **Supporting absolute distance and stretch constraints is difficult**: We point out another frontier for the computational tractability of computing routes through a single waypoint: the problem also becomes NP-hard if in addition to minimizing the total length of the route, there are hard distance (or stretch constraints) between the source resp. destination and the waypoint.

For multiple waypoints (arbitrary k), we show:

1) **Routes through a fixed number of waypoints can be computed in polynomial time**: This result follows by a reduction to a classic result by Robertson and Seymour [12].

2) **Already the decision problem is hard in general**: For general k, even on undirected graphs, the decision problem (whether a feasible route exists) is NP-hard.

Motivated by these results and the fact that the topologies of real-world networks (e.g., datacenter, enterprise, carrier networks) are often not arbitrary but feature additional structure, we take a closer look at special networks.

1) **In reality, there is hope**: We present several algorithms to compute shortest waypoint routes on specific graph families, in particular outer-planetar graphs (which are of treewidth at most two).

2) **An accurate characterization of tractability**: We show that it is difficult to go significantly beyond the graph families studied above, by deriving NP-hardness results on slightly more general graph families already (graphs of treewidth three).

An overview of our complexity results derived in this paper can be found in Table I. We further note that in the following figures, we will draw (s, w) paths in solid red and (w, t) paths in solid blue, depicting alternative paths in a dotted style. An overview of our complexity results for general graphs can be found in Table II.

E. Paper Organization

We start in Sec. II by considering routing problems via a single waypoint, before studying multiple waypoints in Sec. III. We then discuss our case study in Sec. IV before concluding in Sec. V.

II. ROUTING VIA A WAYPOINT

We start by considering the fundamental problem of how to route a flow from s to t via a single waypoint w.

A. Undirected Graphs Are Tractable

Many graph theoretical problems revolve around undirected graphs, and we therefore also consider them first. In undirected graphs, flows can consume bandwidth capacity in both
Table I

<table>
<thead>
<tr>
<th>Waypoints</th>
<th>Feasible</th>
<th>Optimal</th>
<th>Demand Change Feasible</th>
<th>Optimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undirected</td>
<td>1 constant</td>
<td>P (Thm. 6)</td>
<td>?</td>
<td>Strongly NPC (Thm. 2)</td>
</tr>
<tr>
<td>Directed</td>
<td>1 constant</td>
<td>Strongly NPC (Thm. 3)</td>
<td>Strongly NPC (Thm. 5)</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. In undirected graphs, path segments need to be jointly optimized: greedily selecting a shortest path from s to w can force a very long path from w to t. Once the solid red (s,w) path has been inserted first as a shortest path, there is only one option for the solid blue (w,s) path, resulting in a walk length of $2 + 6 = 8$. A joint optimization leads to the dotted red (s,w) path and the dotted blue (w,t) path, with a total length of $4 + 2 = 6$.

However, the above observations also allow us to compute an optimal solution: the computation of shortest link-disjoint paths (s_1,t_1) and (s_2,t_2) is a well-known combinatorial problem, to which we can directly reduce the waypoint routing problem by setting $s_1 = s_1 = s_2 = w, t_2 = t$. Unfortunately however, while a recent breakthrough result [6] has shown how to compute shortest two disjoint paths in randomized polynomial time, the result is a theoretical one: the order of the runtime polynomial is far from practical.

Yet, there is still hope: our problem is strictly simpler, as the two paths have a common endpoint $t_1 = s_2 = w$. Indeed, the common endpoint w can be leveraged to employ a reduction to a (multi-commodity) integer flow formulation: introduce a super-source S^+ and a super-destination T^+, connect S^+ to s and t, and T^+ to w with two links, all of unit capacity, see Fig. 4. Next, solve the minimum cost integer flow problem from S^+ to T^+ with a demand of 2. By performing flow decomposition and removing S^+, T^+, we obtain an $s - w$ and a $w - t$ flow, whose combined length is minimum. Note that in undirected graphs, any $s - t$ flow can also be interpreted as a $t - s$ flow. It is well-known that this flow problem can be solved fairly efficiently: for a single source and a single destination, the minimum cost integer flow can be solved in polynomial time $O((m \log m)(m + n \log n))$, cf. [13] p. 227.

But there exist even better solutions. In fact, we can leverage a reduction to a problem concerned with the computation of two (shortest) disjoint paths between the same endpoints s and t. For this problem, there exists a well-known and fast algorithm by Suurballe for node-disjoint paths [14]: it first uses Dijkstra’s algorithm to find a first path, modifies the graph links, and then runs Dijkstra’s algorithm a second time. It was extended 10 years later to link-disjoint paths by Suurballe and Tarjan [15]:

Theorem 1: On undirected graphs with non-negative link weights, the shortest waypoint routing problem can be solved for a single waypoint in a runtime of $O(m \log (1 + m/n))$.

Proof: We will make use of Suurballe’s algorithm extended to the link-disjoint case [15] in our proof, which solves the following problem in a runtime of $O(m \log (1 + m/n))$: Given a directed graph $G = (V,E)$, find two link-disjoint paths from s to t, with $s, t \in V$, where their combined length is minimum. To apply it to the undirected case, we can make use of a

1. If parallel links are undesired, each link could additionally be subdivided by placing an additional node in the middle, and splitting the link cost in two halves accordingly. As discussed later in more details, note however that the resulting topology may have different properties than the original one (due to the parallel resp. subdivided links).

2. Undirected instances can be turned into directed ones, by replacing each link by two antiparallel directed links. After obtaining a directed solution, flows on antiparallel links can be canceled out, obtaining an undirected solution.
standard reduction from undirected graphs to directed graphs for link-disjoint paths, replacing every undirected link with five directed links [16], see Figure 3. As the flow orientation is not relevant on undirected graphs, we obtain a solution for finding two link-disjoint paths from s to t on undirected graphs.

Note that the above applies to unit link capacities, which we extend to larger link capacities as follows: We can apply a standard reduction technique, creating two parallel undirected links if the capacity suffices. Observe that more than two parallel links do not change the feasibility.

Now add a super-source S^+ and a super-destination T^+ to the transformed directed graph, connecting S^+ to s and T^+ to w with two link of unit capacity, see Fig. 4. To remove the parallel link property from the graph, nodes are placed on all links, splitting them into a path of length two, scaling path lengths by a factor of two. In total, the number of nodes and links are still in $O(n)$ and $O(m)$, respectively, allowing us to run Suurballe’s extended algorithm in $O(m \log (1 + m/n)n)$. Lastly, by removing S^+, T^+, translating the graph back to be undirected, and scaling the path lengths back, we obtain an $s - w$ and a $w - t$ path, whose combined length is minimum. Should no solution exist, Suurballe’s extended algorithm will notice it during its execution.

Thus, we conclude that finding a shortest (s, w, t) walk is significantly simpler than shortest two paths $(s_1, t_1), (s_2, t_2)$.

B. Flow Size Changes Make it Hard

We have assumed so far that traffic rates are not changed at waypoints. However, there are many scenarios where waypoints increase or decrease the bandwidth demand. For example, the addition of an encapsulation header will increase the packet sizes whereas a wide-area network optimizer may compress the packets. Unfortunately, it turns out that computing routes through a single waypoint which changes the bandwidth is much harder than routing through waypoints which do not:

Theorem 2: On undirected graphs in which waypoints are not flow-conserving, computing a shortest route through a single waypoint is strongly NP-complete.

Proof: Reduction from the strongly NP-hard 2-splittable flow problem: Given an undirected graph G with link capacities, are there two paths to route the flow from S^+ to T^+ s.t. the flow is maximized? Koch and Spenke showed in [17] that determining whether the maximum throughput is 2 or 3 in the 2-splittable flow problem is strongly NP-hard on undirected graphs with link capacities of 1 or 2.

Our reduction will be from the corresponding decision problem, i.e., does a flow of size 3 exist? Assume for ease of construction that $s := S^+ =: t$ and $w := T^+$. As all link capacities are either 1 or 2, we only need to check the variants $d_1 \in \{1, 2\}, d_2 \in \{1, 2\}$ of the capacitated waypoint routing problem for feasibility.

Therefore, if there was a polynomial algorithm for the capacitated waypoint routing problem on undirected graphs, we would also obtain a polynomial algorithm for the earlier mentioned strongly NP-hard problem. Lastly, the capacitated waypoint routing problem is clearly in NP.

C. Directions Are Challenging As Well

But not only waypoints changing the flow sizes turn the problem hard quickly: in a directed network, already the problem of finding a feasible waypoint route is NP-hard, even if waypoints are flow conserving.

Theorem 3: On directed graphs, the waypoint routing problem is strongly NP-complete for a single waypoint.

Proof: Our proof is by a reduction from the strongly NP-complete 2-link-disjoint paths problem [18]. Given two node pairs $(s_1, t_1), (s_2, t_2)$ in a directed graph $G = (V, E)$, are there two link-disjoint paths $P_1 = s_1, . . . , t_1, P_2 = s_2, . . . , t_2$?

We perform a reduction of all problem instances I of the 2-link-disjoint paths problem in graphs G to instances I' in
graphs G' as follows: Create a (waypoint) node w, and add the directed links (t_1, w) and (w, s_2), see Fig. 5. To finish the construction of the waypoint routing problem in I', set $s := s_1$ and $t := t_2$: Is there a route from s via w to t, using every link only once?

If I is a yes-instance, I' is a yes-instance as well, by joining the paths P_1, P_2 via the directed links (t_1, w) and (w, s_2). Next, we show that if I is a no-instance, I' is a no-instance as well: First, observe that to traverse w in G' starting from s, the only option is via traversing both links (t_1, w) and (w, s_2), successively in that order. Thus, assume for the sake of contradiction that I' is a yes-instance with a link-disjoint walk $W = s, ..., t_1, w, s_2, ..., t$. Then, we can also create two link-disjoint walks $W_1 = s_1, ..., t$ and $W_2 = s_2, ..., t_2$ in I by removing both links (t_1, w) and (w, s_2) from W. Removing the loops in W_1 and W_2 results in paths P_1 and P_2 solving I, a contradiction.

To conclude, observe that the reduction can be performed in polynomial time, and as the problem is clearly in NP, the problem is NP-complete.

D. Another Complexity: Distance Constraints

Another problem variant arises if we do not only want to find a feasible (or shortest) path from s via w to t, but also have hard constraints on the distance or stretch from s to the waypoint, or from the waypoint to the destination.

Theorem 4: The problem of finding a feasible path from s to t via w subject to distance constraints between two consecutive nodes from s, w, t is strongly NP-complete on undirected graphs.

Proof: This follows from a reduction from the hardness of finding 2 link-disjoint paths under a min max objective. Li et al. [19] showed that given a graph $G = (V, E)$ and two nodes s' and t', the problem of finding two disjoint paths from s' to t' such that the length of the longer path is minimized is strongly NP-complete, even with unit link weights. This implies that the waypoint routing problem is strongly NP-complete as well, by setting $s = t = s'$ and $w = t'$.

Recall that the directed case of a single waypoint was already hard without distance constraints, see Theorem 3.

We note that Itai et al. [20] showed the two link-disjoint path problem with distance constraints to be NP-complete on directed acyclic graphs, using exponential link weights (polynomial in binary representation) in their construction. However, as we will show later, the distance constrained directed waypoint routing problem is polynomially time solvable on DAGs, even for arbitrarily many waypoints.

III. Routing Via Multiple Waypoints

The advent of more complex network services requires the routing of traffic through sequences of (multiple) waypoints. Interestingly, and despite the numerous hardness results derived for a single waypoint in the previous section, we will see that it is still possible to derive some polynomial-time algorithms even for multiple waypoints.

A. Possible For a Fixed Number of Waypoints...

Interestingly, the k-waypoint routing problem is tractable when the number of waypoints is constant:

Theorem 5: On undirected graphs, one can decide in polynomial time $O(m^2)$ whether a feasible route through a fixed number of waypoints exists.

Proof of Theorem 5 The proof follows nearly directly by application of [21], building upon the seminal work of Robertson and Seymour [12]: the authors show that for any fixed k, the k-link-disjoint path problem can be decided in polynomial-runtime of $O(n^2)$ on undirected graphs. It only remains to set all link capacities to one: To do so, we divide the links into parallel links, their number bounded by k, even if the capacity is higher. Then, we place a node on every link, obtaining a graph with $O(n + km) \in O(m)$ nodes.

B. ... Hard Already on Eulerian Graphs

While polynomial-time solutions exist for fixed k on general graphs, we now show that for general k, the problem is computationally intractable already on undirected Eulerian graphs (graphs on which routing problems are often simple), where all nodes have even degree.

Theorem 6: The waypoint routing problem is strongly NP-complete on undirected Eulerian graphs.

Proof: We briefly introduce some notions for the problem that we will use for the reduction. The link-disjoint path problem can also be formulated via a supply graph $G = (V, E)$, which supplies the links to route the paths, and a demand graph $H = (V, E(H))$, whose links imply between which nodes there is a demand for a path. I.e., $\{(s_1, t_1), ..., (s_k, t_k)\} = E(H)$. The union of both graphs is defined as $(V, E \cup E(H))$.

We now reduce from the strongly NP-complete problem of finding link-disjoint paths where the union of the supply and the demand graph is Eulerian [22]. Our polynomial reduction construction of an instance I to an undirected graph $G' = (V', E')$ proceeds as follows: We first initialize $V' = V$ and $E' = E \cup E(H)$. Next, we add a new center node v to G', containing s, t. For simplicity, we will assume that v also contains the k - 1 waypoints $w_2, w_8, w_{12},..., w_{4(k-1)}$; those can also be moved to small cycles connected to v. Next, for $1 \leq i \leq k$, we define the remaining waypoints as follows: $w_{4i-3} = s, w_{4i-2} = t, w_{4i-1} = s_i$. We also add two links between v and each s_i to E', $1 \leq i \leq k$. I.e., our waypoint problem is now an instance I': Start in the center node v, go to s_1, then to t_1, back to s_1, then to v; then proceed similarly for s_2..., to s_k, and ending at v. We note that new graph is still Eulerian.

We start with the easier case, showing that if I is a yes-instance, I' is as well: We can take the k disjoint paths of the solution of I in G, add the k (t_i, s_i) paths via the links of $H(E)$, and lastly connect the waypoint path-segments in order via the incident links of v.

It remains to show that if I' is a yes-instance, I is as well. First, if the k (t_i, s_i) paths use links outside of $E(H)$, we can alter the solution so that only the links of $E(H)$ are used for the k (t_i, s_i) paths: Assume for some i, that the
link \((t_i, s_i) \in E(H)\) is not used for the path \(P\) from \(t_i\) to \(s_i\), but is rather part of another walk \(W_j\) from some \(w_j\) to \(w_{j+1}\) (if the link is not used at all, the swap can be done directly). Then we can swap in \(W_j\) the link \((t_i, s_i) \in E(H)\) with \(P\). Second, \(v\) has a degree of \(2k\). Because \(s, t\) and \(w_{4i-2} = t_i\) are pairwise non-constructive waypoints, and no walk between any \(s_i, t_i\) or \(t_i, s_i\) can use the links incident to \(v\), they must be used for all subwalks starting and ending at \(v\). As thus, the subwalks between the \(k\) \(s_i\) and \(t_i\) (which can be simplified to paths) will now only use links already present in \(G\). Lastly, observing that the problem is clearly in \(NP\) finishes the proof.

A directed graph is called Eulerian, if for each node \(u\) holds: The in- and out-degree of \(u\) is identical. Marx also showed in [22] the (implicitly strong) \(NP\)-completeness of the directed case. As thus, we can apply analogous proof arguments.

Corollary 1: The ordered waypoint routing problem is strongly \(NP\)-complete on directed Eulerian graphs

IV. Exploring Computational Tractability in Special Networks

Computer networks often have very specific structures: for example, many data centers are highly structured (e.g., based on Clos topologies [23]), but also enterprise and router-level AS topologies for example, while being less symmetric, often come with specific properties (e.g., are sparse). In this light, the results derived so far may be too conservative: in practice, much faster algorithms may be possible which are tailored toward and leverage the specific network structure. Accordingly, in this section we explore the waypoint routing problem on specific graph families. In particular, we are interested in sparse graphs. A short empirical study shows that Rocketfuel topologies [24] or Internet Topology Zoo graphs [25] often have a low path diversity: almost half of these graphs are outerplanar, and one third are cactus graphs.

A. Exact Polynomial-Time Algorithms

On tree networks, paths between two given nodes are unique, and finding shortest walks hence trivial: simply compute a shortest path for each path segment (recall: a simple path), one-by-one. If this path is feasible, it is optimal; if not, no solution exists. Note that this also holds if waypoints change the flow rate, and for directed graphs, when the underlying undirected graph is a tree. A similar results still holds on Directed Acyclic Graphs (DAGs). When making a choice for the path to the next waypoint, we can use a simple greedy algorithm: Any link that we use will never be used for a later path (due to the acyclic property). Hence, we can also minimize distance constraints for trees and DAGs.

In comparison, the link-disjoint path problem is polynomial time solvable for a fixed number of link-disjoint paths on DAGs [18], but \(NP\)-complete in general already on planar DAGs [26].

Observation 2: There are graph families for which the waypoint routing problem can be solved efficiently while the disjoint paths problem cannot.

On the other hand, leveraging our connection to disjoint path problems again, we can also make the following observation:

Observation 3: For any graph family on which the \(k + 1\) disjoint paths problem is polynomial-time solvable, we can also find a route through \(k\) waypoints in polynomial time on graphs of unit link capacity.

Thus, it immediately follows from [27] that the single waypoint routing problem is polynomial time solvable on semicomplete directed graphs, where a directed graph is called semicomplete, if there is at least one directed link between every pair of nodes.

For a further example, on bounded treewidth graphs, and as long as the number of waypoints \(k\) is logarithmically bounded, the problem is polynomial time solvable, because the link-disjoint paths problem is polynomial time solvable: For a treewidth decomposition of width \(\leq t\) and \(k\) link-disjoint paths, Zhou et al. [28] provide an algorithm with a runtime of

\[
O \left(\binom{n + k}{k} + ((k + 4)\binom{n + 2}{2} + (k + 4)\binom{n + 3}{2} + \binom{n + 5}{2}) \right).
\]

As a constant-factor approximation of treewidth decompositions can be obtained in polynomial time [29], also beyond constant treewidth, it is therefore possible to solve the waypoint routing problem for any values of \(t\) and \(k\) and. Equation (1) stays polynomial. E.g., \(t, k \in O \left((\frac{\log n}{\log \log n}) \right)\), due to \(n\) \(\left(\frac{\ln n}{\ln \ln n} \right)^{(\frac{\ln n}{\ln \ln n})} = e^{(\ln n)} = n\).

However, note that the observation is of limited use when dealing with non-unit capacities: while in general graphs, capacities can be modelled by introducing parallel links (and in particular subdividing them by placing auxiliary nodes in the center) can destroy the original graph property, i.e., the shortest-paths algorithm is not applicable anymore. For example, an outerplanar graph requires nodes to touch the outer face, however, this property will be lost during the graph transformation. Yet, as we will show in the following, solutions for outerplanar graph still exist, even in arbitrarily capacitated networks.

We first prove the following helper lemma.

Lemma 1: Let \(I\) be a class of waypoint routing problems such that:

1) the graph \(G\) is planar (w.l.o.g. we have a planar drawing),
2) the maximum capacity is \(c_{\text{max}}\), w.l.o.g. \(n \geq c_{\text{max}} \in \mathbb{N}\),
3) \(s, t\) and all waypoints touch the outer face \(\mathcal{F}\) of \(G\),
4) for every node \(v \notin \mathcal{F}, \Sigma_{e: \{u,v\} \in E(G)} c(e)\) is even.

Then the feasibility of the ordered waypoint routing problem in the class \(I\) is decidable in a runtime \(O(n^2)\), with the explicit construction taking \(O(m^2 \cdot c_{\text{max}})\).

Proof: Let \(I \in \mathcal{I}\) be an instance of the problem. Suppose \(s, t\) are the source and terminal and \(w_1, \ldots, w_k\) are waypoints. Define \(w_0 = s, w_{k+1} = t\). We construct an equivalent instance of the link-disjoint paths problem as follows. Replace each link \(e = \{u, v\}\) with capacity \(c\) by \(c \leq c_{\text{max}}\) links with capacity 1, then subdivide those links once, i.e., the number of nodes is in \(O(m \cdot c_{\text{max}})\). In the newly created instance of link-disjoint paths problem:

1) the input graph is planar,
2) all terminal pairs touch the outerface,
3) degree of every node, not in the outerface, is even.

For this class of link-disjoint paths problem, there are polynomial time algorithms \([30]\) with the following properties: Let \(b\) be the number of nodes on the outer face and \(n'\) be the total number of nodes. The feasibility of the link-disjoint path problem can be tested in \(O(bn')\) and constructing the paths can be done in \(O(n'^2)\) which gives us the desired polynomial time solutions for the original problem.

This directly implies the following result.

Corollary 2: In outerplanar graphs with a maximum link capacity of \(c_{\text{max}}\), the waypoint routing problem is decidable in a runtime of \(O(n^2)\), with an explicit construction obtainable in time \(O(m^2 \cdot \min\{n^2, c_{\text{max}}^2\})\).

B. Hardness

We have shown that for a large graph family of treewidth at most 2, the outerplanar graphs (which also include cactus graphs for example), the routing paths can be computed efficiently. This raises the question whether the problem can be solved also on graphs of treewidth larger than 2, or at least for all graphs of treewidth at most 2. While the latter remains an open question, in the following we show that problems on graphs of treewidth 3 (namely series-parallel graphs with an additional node connected to all other vertices) are already NP-hard in general.

Theorem 7: Ordered waypoint routing problem is NP-complete in graphs of treewidth at most 3.

Proof: We reduce the ordered waypoint routing problem in graphs of treewidth at most 3 from the link-disjoint paths problem in series parallel graphs, the latter being NP-complete [31].

Let \(I\) be an instance of the link-disjoint paths problem in a series parallel graph \(G\) with terminal pairs \(T_I = \{(s_1, t_1), \ldots, (s_k, t_k)\}\). We construct a new instance \(I'\) of the ordered waypoint problem as follows. Create a graph \(G' := G\), then add one new node \(v\) to \(G'\) and links \(\{t_i, v\}, \{s_j, v\}\) for \(i, j \in [k], i \neq 1, i \neq k\).

For simplicity, set for now \(s := s_1, w_1 := t_1, w_2 = v, w_3 := s_2, w_4 := t_2, w_4 := v, \ldots, t := t_k\), i.e., the order of waypoints is \(s_1, t_1, \ldots, s_k, t_k\), with \(3k - 2\) waypoints in total. I.e., \(v\) “hosts” \(k - 1\) waypoints, with a degree of \(2(k - 1)\). We will show later in the proof how to ensure at most one waypoint per node.

Claim: In any solution for \(I',\) the union of the \(k - 1\) link-disjoint walks from \(s_1\) via \(v\) to \(t_{i+1}\) occupy all links incident to \(v\).

Proof: Any walk from \(s_1\) via \(v\) to \(t_{i+1}\) must leave and enter \(v\) using two links. Hence, the union of all these \(k - 1\) link-disjoint walks occupy all \(2k - 2\) links incident to \(v\).

We can now prove the theorem:

- **If** \(I\) is a yes-instance, then \(I'\) is a yes-instance as well.
 - We take the \(k\) \((s_i, t_i)\)-paths from \(I\), connect them in indexorder with the \(k - 1\) paths \(t_1, v, s_{i+1}\), and obtain the desired ordered waypoint routing.

It is left to show that if \(I\) is a no-instance, then \(I'\) is a no-instance as well:

- **Assume** for contradiction, that \(I\) is a no-instance, but \(I'\) is a yes-instance. As \(I\) is a no-instance, at least one terminal pair \((s_x, t_x)\) of \(I\) must be routed through the additional links of \(G'\) for \(I'\) to be a yes-instance. However, this is a contradiction to the above Claim.

On the other hand, the treewidth of \(G'\) is at most the treewidth of \(G\) plus 1 (we can just put \(v\) in all bags of an optimal tree decomposition of \(G\)). To obtain at most one waypoint on \(v\), we create \(k - 1\) cycles of length four, placing a waypoint on each, and merging another node with \(v\). This construction does not increase the treewidth and also retains earlier proof arguments. As series-parallel graphs have a treewidth of at most 2 [32] (Lemma 11.2.1), \(G'\) has a treewidth of at most 3. As the problem is clearly in NP, with the reduction being polynomial, the proof is complete.

We conjecture that it is possible to directly modify the proof presented in [31], to prove that the feasibility of the waypoint routing problem is hard even in series parallel graphs.

In case of non-flow conserving waypoints, NP-hardness strikes earlier already, namely on unicyclic graphs, which contain only one cycle.

Theorem 8: On undirected unicyclic graphs in which waypoints are not flow-conserving, computing a route through \(O(n)\) waypoints is weakly NP-complete, even if all waypoints can just increase (or, just decrease) the flow size by at most a constant factor.

Proof: Reduction from the weakly NP-complete Partition problem [33], where an instance \(I\) contains \(\ell\) non-negative integers \(i_1, \ldots, i_\ell\), \(\sum_{j=1}^\ell i_j = S\), with the size of the binary representation of all integers polynomially bounded in \(\ell\).

We begin with the case that waypoints can change the flow size arbitrarily. W.l.o.g., let \(\ell\) be even and \(i_1 \leq i_2 \leq \cdots \leq i_\ell\).

We create two stars (denoted left and right star) with \(1 + \ell/2\) leaf nodes each, where all links have a capacity of \(S\). Then, we connect both center nodes of the stars in a cycle (consisting of two parallel edges), with the cycle links having a capacity of \(S/2\).

Next, we place \(s\), here also identified as \(s_1\), on a leaf of the left star and \(t\) on a leaf in the right star. To distribute the remaining \(\ell - 1\) waypoints \(w_2, \ldots, w_\ell\), corresponding to the integers, we place the ones with even indices on leaves in the left star, and those with odd indices in the right star.

Suppose the routing starts with a size of \(i_1\), is changed to \(i_2\) by \(w_2\) and so on. Then, solving the Partition instance \(I\) is equivalent to computing a waypoint routing, as the paths going along the cycle have to be partitioned into two sets, each having a combined demand of \(S/2\).

So far, we assumed that waypoints can change the flow size arbitrarily – but hardness also holds if each waypoint can just increase (or, just decrease) the flow size by a constant amount.

In order to do so, we replace the leaf nodes of the stars with paths of \(O(\log S)\) waypoints, which are used to increase the demands to the desired size.

The directed graph case is analogous by putting all waypoints to one star, creating the same amount of intermediate dummy waypoints in the other star, which do not change the flow size,
and replacing all undirected links with two directed links of opposite directions and identical capacity.

Corollary 3: On directed graphs, with the underlying undirected graph being unicyclic and where waypoints are not flow-conserving, computing a route through $O(n)$ waypoints is NP-complete. Even if all waypoints can just increase (or, just decrease) the flow size by at most a constant factor.

For these two proofs, we used flow sizes that can be exponential in the graph size (due to them being encoded in binary). Nonetheless, recall Theorems 2 and 3 where we showed that the problem also stays hard on general graphs even if the flow sizes are of unit size.

V. Conclusion

This paper initiated the study of a fundamental algorithmic problem underlying modern network services: the routing via waypoints using walks. We hope that our paper can inform the network community about algorithmic techniques which can be applied in this area, and about complexity bounds in terms of NP-hardness.

Acknowledgments. We like to thank Thore Husfeldt for inspiring discussions. Research partly supported by the Villum project ReNet as well as by Aalborg University’s PreLytics project. Saeed Amiri’s research was partly supported by the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No 648527).

REFERENCES

