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Abstract. This paper studies local-control strategies to estimate the
size of a certain event affecting an arbitrary connected subset of nodes
in a network. For example, our algorithms allow nodes in a peer-to-peer
system to explore the remaining connected components after a Denial-of-
Service attack, or nodes in a sensor network to assess the magnitude of
a certain environmental event. In our model, each node can keep some ex-
tra information about its neighborhood computed during the deployment
phase of the network. On the arrival of the event, the goal of the active
nodes is to learn the network topology induced by the event, without the
help of the remaining nodes. This paper studies the tradeoffs between
message and time complexity of possible distributed solutions.

1 Introduction

This paper attends to the problem of how nodes in a network can efficiently learn
about (or deal with) the effects of a certain event. We assume that before the
event takes place, e.g., during network deployment, nodes have sufficient time to
perform certain pre-computations. Then, at some unknown time point, an event
activates an arbitrary subset of nodes. We investigate distributed algorithms
that allow the activated nodes to gather necessary information about the event
in an efficient, cooperative manner — without the help of the remaining nodes.
In particular, our algorithms allow these nodes to learn the topology induced by
affected nodes.
For example, consider a peer-to-peer network which is hit by a virus spreading

along the topology, or which is under a denial-of-service attack. After the attack,
the goal of the surviving peers is to learn about the remaining functional peers
in their respective connected component, e.g., in order to trigger a best-effort
recovery of both data and topology.
Natural disaster detection is another motivation for our model. Today, many

observation systems are used to monitor a certain endangered area and to warn
about floods, fires, or earthquakes in time, to prevent larger damage. Besides
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global solutions like satellite systems, there is a trend towards distributed mon-
itoring with wireless sensor nodes that are distributed in space (see e.g. [3] for
detecting seismic events). Our algorithms can be useful in this context: they al-
low for computing the number of other nodes observing a certain phenomenon.
In our work, we assume that the nodes which are not activated by the event

are inactive (or faulty) and cannot participate in the communication nor in
the computation. This is clear in our peer-to-peer example, as the nodes at-
tacked by the virus may simply be down or crashed. In order to motivate this
assumption in a sensor network, consider the situation where nodes are in an
energy-parsimonious sleeping mode and only wake up in case of some external
physical influence, triggered by the event.

1.1 Model

This work assumes an arbitrary undirected network or graph G = (V, E) of
n = |V | nodes and m = |E| edges. We consider a synchronous model where
algorithms proceed in rounds and where the event happens at a globally unique
time t0. At this time, a subset of the nodes become active, the remaining ones
are inactive. The goal of the active nodes is to find out about other active nodes.
In our model, we assume that the nodes have sufficient time to perform ar-

bitrary preprocessing operations at times t < t0, e.g., to learn the topology.
In particular, we assume that nodes choose unique IDs from {1, ..., n} in the
preprocessing stage. Our algorithms hence work in two stages, where in the first
“offline” stage nodes do preprocessing, and in the second “event” stage, the actual
event is explored. During our analysis, we are mainly interested in the complex-
ities of the second stage. A novelty of the problem studied in this paper comes
from this division.
Henceforth, by V ′ ⊆ V we denote the subset of active nodes and by G′

subgraph of G induced by V ′. We note that G′ is not necessarily connected; we
call connected components of G′ active components. Let s = |V ′| be the number
of active nodes, and let δ denote the active diameter, i.e. the maximum diameter
of an active component.1 We aim at designing algorithms in which all active
nodes will learn about their active components; in particular, nodes will learn
the size of their components. Observe that usually, once there is at least one
node vG′ ∈ G′ with this knowledge in a component G′, vG′ can subsequently
inform all other nodes in G′ along a corresponding spanning tree. Hence, in the
following, we sometimes concentrate on this case only, given that sending this
information along the spanning tree does not change the asymptotic complexity.
We strive to optimize two criteria: First, our algorithms should have a good re-

action time (time complexity). We measure the time (i.e., the number of rounds)
until all active nodes know the IDs of the other active nodes in their active com-
ponent. In each round, the nodes can perform arbitrary local computations and
communicate with their neighbors in the network.

1 Observe that the active diameter can be much larger than the diameter. For instance,
in a

√
n ×√

n-grid, the active diameter can be linear in n.
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Second, we want the algorithm to send as few messages as possible (message
complexity). We assume that in a round, each node can send a (different) message
to each neighbor. Each such message costs a unit of energy, independently of the
neighbor being active or not. We are interested in the total number of messages
sent by all active nodes and our focus is on feasibility, so — in the lines of the
LOCAL model [11] — we do not restrict the size of messages. Notice however
that at time t0 nodes do not know which of their neighbors are active and
which are not. They have to deduce this knowledge from the protocol and the
communication pattern in subsequent rounds.

1.2 Related Work

There is a considerable scientific interest in distributed monitoring and alarming
systems. For instance, there are approaches to detect the boundaries of a toxic
leach [6] or monitoring mechanisms to defend against Internet worms [7]. Our
work is also related to literature on robustness of overlay networks, where nodes
need to reorganize after an attack in an efficient manner [5].
Our paper belongs to the field of local algorithms where computations are

performed by repeated interactions of nodes with their neighbors. Our problem
formulation is reminiscent of classic problems such as leader election, and indeed,
most of our algorithms implicitly solve this problem. However, we can identify at
least two interesting and new aspects of our model. First, our algorithms adapt
themselves to the environment, in the sense that the runtime and the number of
messages is smaller for fewer active nodes. Several papers recently investigated
local solutions for global problems for which the runtime depends on the concrete
problem input [2], rather than considering the worst-case over all possible inputs:
if in a special instance of a problem the input behaves well, a solution can be
computed quickly. Second, we assume that only active nodes can participate in
the computations, while the number of active nodes is not known in advance.
Thus, preprocessing the graph appears to be of limited use, as any precomputed
coordination points or infrastructure may not be active later. This poses a higher
demand on efficient coordination primitives during runtime.
It is interesting to compare our work to the disaster disclosure problem intro-

duced by Mans et al. [9] — the closest paper to our work. In [9], it is assumed
that nodes that did not sense an event can participate in the coordinated explo-
ration of a disaster. For example, this so-called “on-duty model” is meaningful
in sensor networks where all nodes are regularly “online” in order to exchange
status updates and can start collaborating on demand. In contrast, in the model
studied in our work, we try to capture a scenario where certain nodes are not
available during the distributed computations after the event; this so-called “off-
duty model” has been stated as an open research direction in [9]. Despite the
similar nature of the on-duty and the off-duty model, the two problems exhibit
a different structure. This is due to the fact that in the on-duty model, nodes
can heavily rely on computations done during the pre-processing phase. Indeed,
the approach taken in [9] relies on a hierarchy of “leaders” elected during de-
ployment. However, in the off-duty model the use of such local coordinators is
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out of question: they may be unavailable during the event exploration phase.
This has implications both on the design of algorithms as well as the achievable
performance.

1.3 Our Contribution

This paper initiates the study of a new model for estimating the size of an event,
where the affected nodes need to coordinate without the help of the remaining
nodes. The task is non-trivial, because nodes do not know the structure of the
active component in advance. On the other hand, we aim to make the runtime
and the number of messages dependent on the size of the affected node set and
not on the size of the network. In this work, we study the tradeoffs between the
runtime and the number of messages needed to solve the task.
We begin our investigations with a case study of one-hop networks (i.e., com-

plete graphs, see Section 2). We describe a natural and simple algorithm family
Group, where nodes organize in groups of increasing sizes. Subsequently, we
describe a randomized Las Vegas approach Rand where nodes seek to “guess”
the number of active nodes in order to coordinate. In expectation, the algorithm
requires time O(log(n/s)) and O(n) messages. In Section 3, we complement our
insights on clique algorithms with lower bounds. We show that our problem
requires an understanding of the intriguing interplay of time and message com-
plexity, and use Turán’s theorem together with the concept of primary schedules
to show that the product of time and message complexity of any deterministic
algorithm is at least Ω(n log log n). This proves that our results for clique are
optimal up to logarithmic factors.
Section 4 proceeds to examine arbitrary topologies. We first discuss general

graph searching techniques combined with waiting techniques, and then intro-
duce a preprocessing scheme, which allows each node to locally and efficiently de-
tect its active neighbors. The complexity of this scheme depends on a graph’s ar-
boricity, i.e., the forest cover size. Given this construction, we present theMinID
algorithm with time complexity O(s log s) and message complexity O(αs log s),
i.e., its performance only depends on the event size s and the graph arboricity α.
Motivated by our results for general graphs, we tackle the important case of

planar graphs (Section 5), which are known to have constant arboricity. There
the time and message complexities of our algorithm MinID are optimal up to
an O(log s) factor. We also show that the message complexity can be improved:
using the Planar Separator Theorem, we construct a graph decomposition ap-
proach resulting in an algorithm family k-Sep which yields optimal message
complexity and non-trivial time.

2 The Clique

To start our scrutinies and to get acquainted with the model, we consider the
case of one-hop networks. Note that in such networks, active nodes form only one
connected component. Clearly, here a broadcast by all active nodes is already
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time-optimal, but it requires s · (n − 1) messages. We therefore study a nat-
ural class of algorithms called Group where nodes organize themselves recur-
sively into groups. Subsequently, we extend our scope to randomized algorithms
and study an efficient algorithm Rand which tries to estimate the active set
cardinality.

2.1 The Algorithm Group

The algorithm Group uses an integer parameter k ∈ {2, . . . n}. For simplicity
of description, we assume that logk n is an integer as well. We further assume
that node identifiers are written as (logk n)-digit strings, where each digit is
an integer between 0 and k−1. This implicitly creates the following hierarchical
partitioning of all nodes into clusters. The topmost cluster (on level logk n)
contains all nodes and is divided into k clusters, each consisting of n/k nodes,
where cluster i contains all the nodes whose first digit is equal to i. Each of
these clusters is also partitioned into k clusters on the basis of the second digit
of identifiers. This partitioning proceeds to leafs, which are 0th level clusters,
each containing a single node. We call a cluster active if it contains at least one
active node.
Group works in logk n phases, where in the ith phase we are dealing with

clusters on level i. We inductively require that at the beginning of the phase,
there is a leader in each ith level active cluster; the leader knows all the active
nodes within its cluster and all these nodes know the leader. Thus, at the end
of the phase logk n, all nodes constitute a single cluster and its leader knows the
set of all active nodes.
To study what happens in the ith phase, we concentrate on a single (i + 1)th

level cluster A. (The procedure is performed in all such clusters independently
in parallel.) A consists of k ith level clusters, denoted A1, A2, . . . , Ak, which
will merge in this phase. Moreover the leader of A is the node with smallest
ID amongst leaders of active clusters Ai. The merging procedure comes in two
flavors: parallel (Par) and sequential (Seq).
In the Par variant, a phase lasts two rounds. In the first round, the leaders of

clusters Aj broadcast a “hello message” to all nodes from these clusters. All the
active nodes among them answer with a message to a leader with the smallest
identifier, and this node becomes a leader of the (i + 1)th level cluster.
In the Seq variant, the phase lasts for k+1 rounds. For j ≤ k, in the jth round,

the leader of cluster Aj broadcasts a hello message to all nodes from A, provided
such a message was not sent already. The nodes which hear the message, answer
in the next round, and the leader that transmitted the broadcast becomes a
leader of the next higher level cluster, the (i + 1)th level cluster.

Theorem 1. Fix any 1 ≤ � ≤ log n. Then there exists a parameterization of
the algorithm Group which solves the problem using O(�) rounds and O(n ·
� · min{n1/�, s}) messages and there exists a parameterization, which solves it
using O(� · n1/�) rounds and O(n · �) messages.
Proof. We measure the time and message complexity of the Group algorithm
using variants Par and Seq for all levels and choosing k = n1/�, i.e. logk n = �.
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Fig. 1. Performance comparison of different clique algorithms. Black dots represent
different algorithms and the black line indicates the trade-offs achievable with the
Group algorithm. Darker regions represent infeasibility results.

Clearly, in the Par variant, the algorithm needs 2 · logk n = O(�) rounds. As for
the message complexity, we look at a single phase i. In the first round of this
phase, each node gets a hello message from at most min{k, s} leaders and sends
a reply. Therefore, the algorithm uses at most 2 ·min{k, s} · n · logk n = O(n · � ·
min {n1/�, s}) messages. The variant Seq requires (k + 1) · logk n = O(� · n1/�)
rounds. Then, in a single phase, each node gets at most one hello message and
answers at most once. Thus, the total number of messages transmitted is at most
2 · n · logk n = O(n · �). ��
We observe that the best time×message-product is achieved for � = log n, in
which case Group solves the problem in time O(log n) using O(n log n) mes-
sages. Note that Group can be regarded as a generalization of two graph search
techniques: the extreme cases require 1 round or n messages and correspond to
parallel or sequential flooding of the graph by active nodes. These trade-offs are
depicted in Figure 1.

2.2 Randomized Cardinality Guessing

In this section, we extend our analysis to randomized approaches. The idea
behind our algorithm Rand is to approximately “guess” the number of active
nodes. For succinctness of the description, we assume that n is a power of 2.
Rand proceeds in log n + 1 phases, numbered from 0 to log n, each consisting
of two rounds. In the first round of the ith phase, each node — with probability
pi = 2i/n— broadcasts a hello message to all other nodes. In the second round
active nodes reply. After a phase with a broadcast, the algorithm terminates.
The Las Vegas algorithm Rand always solves the problem, as in phase log n
each node performs a broadcast (with probability 1).

Theorem 2. On expectation, Rand terminates in O(log(n/s)) rounds and uses
O(n) messages.

Proof. Let k = �log(n/s)�, i.e., 2k−1 < n/s ≤ 2k. Then, phase k is the first
phase in which the broadcast probability of each node reaches 1/s, i.e., pk ∈



Event Extent Estimation 63

[1/s, 2/s). It is sufficient to show that the algorithm makes its first broadcast
around phase k, and, in expectation, it makes a constant number of broadcasts.
Let Ei denote an event that Rand does not finish till phase i (inclusive),

i.e., there was no broadcast in phases 1, 2, . . . , i. Let τ be a random variable
denoting the number of phases of Rand. Then, E[τ ] =

∑log n
i=1 Pr[τ ≥ i] =

∑log n−1
i=0 Pr[Ei] ≤

∑k−1
i=0 1 +

∑log n−k−1
j=0 Pr[Ek+j ].

To bound the last term, we first observe that the necessary condition for Ei

is that no node transmits in phase i. Hence, Pr[Ei] ≤ (1 − pi)s, and thus for
0 ≤ j ≤ log n − k − 1,

Pr[Ek+j ] =
(

1 − 2k+j

n

)s

≤
(

1
e

) 2k+j

n ·s
≤ e−2j

.

Therefore, E[τ ] ≤ k + O(1).
Now, we upper-bound the number of transmitted messages. Let Xi be a ran-

dom variable denoting the number of nodes transmitting in phase i. Then,
E[Xi|Ei−1] = s · pi. The expected total number of transmitted messages is then

E

[
log n∑

i=0

Xi

]

=
k+1∑

i=0

E[Xi|Ei−1] · Pr[Ei−1] +
log n−k−1∑

j=1

E[Xk+j+1|Ek+j ] · Pr[Ek+j ]

≤
k+1∑

i=1

s · pi · 1 +
log n−k−1∑

j=1

s · pk+j+1 · e−2j

≤ 4 · s · pk + s · pk

∞∑

j=1

(
2j+1 · e−2j

)

= O(s · pk) = O(1) .

As the expected number of broadcasts is constant, the expected number of mes-
sages is O(n). ��

3 Lower Bounds

Our bounds from the previous section raise the question of what can and cannot
be achieved in distributed event size estimation. Hence, we turn our attention
to lower bounds. Clearly, in any graph, an algorithm solving the problem needs
Ω(δ) rounds, as there exists a pair of active nodes in distance δ and any node has
to communicate with both of them. Also, each active node has to send or hear
at least one message, and therefore the total communication is at least Ω(s).
Below we again concentrate on cliques. Fix any deterministic algorithm Alg,

and assume that only node i is active. Then i transmits messages in some par-
ticular order, which we call a primary schedule for i. Note that for any starting
set of active nodes, Alg uses the primary schedule for i as long as i does not
receive a message from other nodes. For succinctness, we say that Alg p-sends
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a message in round �, meaning that the primary schedule ofAlg sends a message
in round �. We say that two nodes p-contact if one of them p-sends a message
to the other. Using an averaging argument, we may find a pair of nodes which
p-contact after transmitting many messages.

Lemma 1. For any deterministic algorithm for the clique and for any subset
of k nodes A, there exists a pair of nodes v, v′ ∈ A which p-contact only after
either of them p-sends at least k/2 − 1 messages.

Proof. First, we observe that the total number of messages in all primary sched-
ules is at least

(
k
2

)
. Otherwise, there would exist a pair of nodes which never

p-contact. In effect, if the algorithm is run on an instance where only these
two nodes are active, it cannot solve the problem, as none of these nodes can
distinguish between instances where the second node is active or inactive.
For simplicity of the description, we assume that messages are p-sent sequen-

tially. The j-th message of node i receives label j. An edge between node i and i′

receives the label which is the minimum of the labels of messages sent from i
to i′ and from i′ to i. It is therefore sufficient to show that there exists an edge
with label at least k/2. Assume the contrary, i.e., all edges have labels of at most
k/2 − 1. Then the label of any message would be at most k/2 − 1, which would
imply that the total number of p-sent messages is k · (k

2 − 1) <
(
k
2

)
. ��

By Lemma 1, it is possible, for any given algorithm, to choose two active nodes
in a clique, so that they contact after sending Ω(n) messages. In a similar way,
we may show that the Ω(n)-message bound holds for an arbitrary number of
active nodes.

Corollary 1. The number of messages sent by any deterministic algorithm in
a clique is at least Ω(n).

Theorem 3. For any fixed s and n, there exists an n-node graph, such that for
any algorithm for this graph, there exists an instance of the problem with s active
nodes, on which the algorithm performs Ω(n) message transmissions.

Proof. Fix any s ≤ n. If s ≥ n/2, then the theorem follows immediately in any
graph by the trivial Ω(s) lower bound.
Otherwise, we assume that s < n/2 and we construct a graph, in which

a choice of s−2 active nodes is already fixed in a way which cannot help meeting
the remaining two active nodes. The graph is depicted in Figure 2. Its nodes are
partitioned into three sets: a chain S0 of s− 2 nodes, and sets S1, S2 containing

(n − s + 2)/2� and �(n − s + 2)/2� nodes, respectively. Sets S1 and S2 form a
complete bipartite graph.
The algorithm is run on an instance where all s − 2 nodes of S0 are active,

and exactly one node vi ∈ S1 and one node vj ∈ S2 is active. We show that
there exists a pair of nodes vi, vj which contact after sending Ω(n) messages.
As vi knows that all nodes from S0 are active, its primary schedule is not

affected if it contacts or is contacted by a node from S0. This time we consider
only nodes from S1 and S2 and messages crossing the edges between these two
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Fig. 2. Illustration of the lower bound for arbitrary number of active nodes

sets. The total number of such messages in all primary schedules have to be at
least |S1| · |S2|. Using the same labeling technique as in the proof of Lemma 1,
it is straightforward that there exists an edge between S1 and S2 with label
at least f = |S1|·|S2|

|S1|+|S2| , as otherwise the total number of messages would be
(|S1| + |S2|) · (f − 1) < |S1| · |S2|. Since f ∈ Ω(n), the theorem follows. ��
The following theorem sheds light on the tradeoff between time and message
complexity.

Theorem 4. Fix any deterministic algorithm ALG that solves the problem in a
clique using Time rounds andMsg messages. Then Time·Msg = Ω(n·log log n).

Proof. We assume that log log n ≥ 4. We consider the first t rounds of the nodes’
primary schedules, where t = log(log n/ log log log n) = Ω(log log n).
First, assume that there exists a subset A of n/2 nodes, each p-sending less

than n/4 messages in the first t steps. By Lemma 1, there exists a pair of nodes
v, v′ ∈ A, which first contact after one of them sends at least |A|/2−1 = n/4−1
messages. Thus, if we start Alg on a graph where only v and v′ are active, it
takes at least n/4 messages and time t.
Hence, in the remaining part of the proof, we assume that there is a set B0 of

at least n/2 nodes, each p-sending at least n/4 messages within the first t steps.
We create a sequence of sets {Bi}t

i=0, such that Bi is a maximum subset of
Bi−1 with the property that no two nodes of Bi p-send a message to each other
in round i. By induction, no node from Bi p-sends a message to another node
from Bi within the first i steps. Let h = 1

2 · log log n. We show the following
property:

Assume that for all i ≤ t−1, the nodes of Bi p-send in total at most hn/4
messages in round i. Then for all i ≤ t, it holds that |Bi| ≥ n

2·(2h)2i−1 .

We prove the property inductively. The initial case of i = 0 holds trivially. Fix
any round i ≤ t. In round i− 1 the nodes of Bi−1 p-sent at most hn/4 messages
to themselves. Consider a graph on nodes from Bi−1, in which an edge exists
between a pair of nodes if they contact in round i−1. The average degree in this
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graph is (h·n)/(2·|Bi−1|) and by Turán’s theorem [1], there exists an independent
set Bi of size

|Bi| ≥ |Bi−1|
1 + h·n

2·|Bi−1|
≥ |Bi−1|2

h · n ≥ n2

4 · (2h)2i−2 · h · n =
n

2 · (2h)2i−1
.

In our context, independence means that the nodes of Bi do not p-contact each
other in round i.
Finally, we show how the theorem follows by the property above. If there

exists a round i ≤ t − 1 in which nodes of Bi p-send at least hn/4 messages,
then we run Alg on a graph where only nodes of Bi are active and the theorem
follows immediately. Otherwise, Bt contains at least n/(2 · (2h)2

t−1) ≥ 2 nodes.
Then, if we run Alg on a graph where only nodes of Bt are active, they do not
contact within the first t steps and each of them sends at least n/4 messages. ��

4 Arbitrary Graphs

In this section, we construct algorithms that perform well on arbitrary graphs.
First, we note that it is possible to implement distributed depth/breadth first
search (DFS/BFS) procedures in our environment.

Lemma 2. A distributed DFS procedure initiated at a single node finishes in
time O(s) using O(n) messages. BFS uses O(δ) rounds and O(m) messages.

Proof. A BFS procedure is just a simple flooding and its time and message
complexities are straightforward.
As for DFS, we fix a starting node. We say that this node holds the “token”:

the token indicates the node that would be processed in the centralized DFS.
This token is a table of current knowledge about all the nodes: nodes are either
known to be active, known to be inactive or have unknown state. During our
procedure, the token node tries to forward the token to the neighbor which would
be next on the DFS tree. This is done as follows. First, the token node “pings”
all its neighbors with unknown state and active neighbors respond immediately.
Then like in the centralized DFS algorithm the token is passed to any unvisited
active node, and if there is none, the token is sent back to the node from which it
came. As DFS proceeds along the DFS tree spanning all active nodes in a single
component, it takes time O(s). In the process of gaining knowledge each node
changes its state just once, so the number of messages is O(n). ��
These procedures are useful if there is a predefined leader. Otherwise, we have
to start this procedure at all (active) nodes utilizing some level of parallelism.

Lemma 3. For arbitrary graphs, for any 1 ≤ k ≤ n, there exists an algorithm k-
WaitDFS, which solves the problem in O(n2/k) rounds using O(min{k, s} · n)
messages. There also exist algorithms ParDFS, solving the problem in O(s)
rounds using O(s·n) messages and ParBFS which takes time O(δ) and performs
O(m · s) message transmissions.
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Fig. 3. Performance comparison of different algorithms for arbitrary graphs

Proof. In general, our problem can be solved by running s instances of DFS in
parallel. We call this algorithm ParDFS. Obviously, it runs in time O(s) and
uses O(s · n) messages.
One way to reduce the number of messages is to have a graded start of the DFS

procedures. Of course, as we do not know which nodes are active, we may need to
wait for potentially inactive nodes. Concretely, in our algorithm k-WaitDFS, we
exploit the fact that the nodes are ordered in the preprocessing stage (i.e. they
have IDs from 1 to n). We divide time into �n/k� phases of length Θ(n). This
length is chosen in such a way that for any choice of the active nodes, the
worst-case execution of a DFS initiated at any node ends within one phase.
In phase i, we define a subset of busy nodes. These are nodes with identifiers
between k · (i − 1) + 1 and k · i, which have not participated in any DFS so far.
All nodes which are active and busy start their DFS procedures, transmitting
in total at most O(min{k, s} · n) messages in one phase. In the worst-case, the
algorithm finishes after �n/k� phases, i.e., after O(n2/k) rounds.
If we only care about the time complexity, the optimal algorithm initiated by

a single node is a BFS (i.e., flooding). Again, we have to cope with an issue of
choosing the node which initiates such a search; in the algorithm ParBFS, all
nodes perform a BFS concurrently. ��
In the remaining part of this section, we first present a technique for efficient
neighborhood discovery and later use it in an algorithm MinID, whose perfor-
mance is output-sensitive and depends, besides s, only on the arboricity of the
graph.

4.1 Neighborhood Discovery

So far, the preprocessing stage was used for assigning identifiers to nodes only.
In the following, we assume that the nodes pre-compute a list of neighbors they
will contact if they get activated by the event.
We employ the concept of the arboricity of an arbitrary graph G which

is defined as the minimum number of forests α that are required to cover
all edges in G. During preprocessing of the network, we compute respective
rooted spanning forests F = {F1, F2, .., Fα}. We note that this decomposition
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can be performed in polynomial time [4,10]). For any node v, we define a set
Nv = {w : ∃Fj ∈ F , s.t. w is a parent of v in Fj}.
In the first round of the event stage, every active node v “pings” all nodes

from Nv. At the same time it receives similar probing messages from some of
its active neighbors. Pinged active nodes reply in the second round. We observe
each active node receives a ping or a reply from each of its active neighbors, and
thus learns its active neighborhood.
The neighborhood discovery is performed in two rounds. As each active node

v sends |Nv| ≤ α test messages followed by the transmission of |Nv| receipts, the
total communication complexity is at most O(αs).

4.2 The MinID Algorithm

In the preprocessing phase of MinID, the algorithm assigns identifiers to nodes,
discovers the topology, and computes trees {Fj}α

j=1 as described above. In the
first two rounds of the event stage, using O(αs) messages, each node learns about
its active neighbors. Then a leader election is performed in the way described
below. First, we present the algorithm under the assumption that s is known;
later we show that this assumption is not critical for our analysis.
The discovery of active components is performed by leader election, where

the node with the smallest index distributes its index to everyone else in the
component. The algorithm proceeds in 2 log s phases. Initially, each active node
v defines its own cluster Cv = {v}, with v acting as the leader. In due course the
number of clusters is reduced, s.t., after at most 2 log s phases a single cluster
containing all active nodes in the component is formed. At any time two clusters
Ci and Cj are neighbors if there exists an edge (v, w) connecting two active
nodes v ∈ Ci and w ∈ Cj .
We also assume that before entering a new phase each cluster is supported

by a spanning tree rooted in the leader. Note that the Euler tour defined on
edges of the spanning tree allows to visit all nodes in the cluster in time at
most 2s, e.g., by a token released by the leader. Each cluster Ci is visited by
the token three times. During the first visit at each node v ∈ Ci, the token
distributes the index i to the entire Ci and all active neighbors of Ci in different
clusters. During the second visit, the token collects information about indices
of neighboring clusters and it picks the Cj with the smallest index j. If j < i,
during the third consecutive visit, the token distributes j to all nodes in Ci to
inform them that they are now destined for Cj .
Let GC be a digraph in which the set of nodes is formed of clusters Ci and

where there is an arc from Cj to Ci iff nodes of Ci are destined for Cj . A
node Cw with in-degree 0 in GC corresponds to a cluster that during this phase
spreads its index to all other clusters reachable from Cw according to the directed
connections in GC . Note also that since the maximum in-degree of nodes in GC

is 1, each cluster with in-degree 1 will receive a new index from exactly one
cluster. The process of reindexing is performed by a DFS procedure initiated by
the leader in each cluster Cw with in-degree 0 in GC and it is extended to the
nodes of all (not only neighbors) clusters reachable from Cw (according to the
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connections in GC). The three visits along Euler tours followed by reindexing
take time O(s). The total communication complexity is O(αs), since every edge
is traversed a constant number of times.
It remains to show that during two consecutive phases the number of clusters

is reduced by half in non-trivial components (containing at least two clusters).
Two cases occur. The first case refers to “amalgamation” of clusters where any
cluster either delegates its nodes to some other cluster or is a cluster that provides
its index to some other clusters. In this case the number of clusters is reduced
by half after the execution of a single phase. The second case refers to clusters
whose indices form local minima in GC . If during the first phase such a cluster
Ci has a neighbor Cz that chooses to delegate its nodes to some other cluster
Cj we know that j < i and j is adopted as the new index of Cz. And since j < i
during the next phase Ci will fall into the first case as a cluster that delegates
its nodes to some other cluster. Thus, after at most 2 log s phases exactly one
cluster resides in each component. Hence, for a single phase, the total time is
O(s log s) and the total communication O(αs log s).
Finally, recall that the procedure presented above works under the assumption

that the value of s is known in advance. Since this is not the case we take an
exponentially increasing sequence of upper bounds 2, 4, .., 2i, .., 2�log n� on s, and
run our algorithm assuming for these consecutive powers of two, until the correct
bound on s is found. Note that when the algorithm runs with a wrong assumption
on the size of the component, the nodes eventually learn that the component
is larger than expected. The nodes in clusters that are about to expand too
much are informed by their leaders, and the nodes destined for other clusters,
if not contacted by the new leader on time, also conclude that the bound on
s is inappropriate. Thus, the process is continued until the appropriate bound
on s is found and then it is stopped. Therefore in total the time complexity in
a component of size s is bounded by

∑�log s�
i=1 O(2i · log 2i) = O(s log s). Similarly,

the total communication is O(αs log s).

Theorem 5. In a graph G with arboricity α, the deterministic algorithmMinID
finishes in O(s log s) rounds using O(αs log s) messages.

5 Planar Graphs

Some of our algorithms work much better for planar graphs. The arboricity of
a planar graph is 3 [10]. Thus, MinID runs in time O(s log s) using O(s log s)
messages.
If we run the DFS and BFS procedures (and their variants) after we perform

a neighborhood discovery presented in Section 4.1, then we may decrease the
number of used messages to O(s). These procedures are performed in a manner
that ignores the existence of non-active nodes. In particular, the number of
messages used by ParBFS is then O(s2).
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Fig. 4. Performance comparison of different algorithms for planar graphs

Below we present an algorithm k-Sep, which is specially suited for planar
graphs. While its runtime is larger than that of MinID, its communication
cost is reduced. The performance of the aforementioned algorithms is depicted
in Figure 4.

5.1 Hierarchical Decomposition

We start our description from the preprocessing stage. Recall that the planar
separator theorem by Lipton and Tarjan [8] enables us to partition any set of
nodes V0 of a planar graph into three disjoint sets: a separator U0, s.t. |U0| ≤
c
√

n, and sets A0, B0 of sizes at most 2
3n, such that A0 and B0 are themselves

connected, but there is no edge between them. In the preprocessing stage, this
theorem is applied recursively starting from V to produce a binary decomposition
tree; if an internal node corresponds to a set V0 = U0�A0�B0, then its children
correspond to sets A0 and B0; each leaf contains a single node.
At the beginning of the event stage, the algorithm Sep performs a neighbor-

hood discovery. Then it proceeds recursively as described below. Sep starts from
the root of the tree, which corresponds to three sets V = V0 = U0 � A0 � B0.
It initiates |U0| DFS procedures sequentially, i.e., one after another, starting at
vertices of U0. These procedures are allowed to visit only nodes in V0; for the
execution of each of them we reserve O(|V0|) rounds. Moreover, a node which
already took part in any DFS, does not start its own DFS. Thus, if an active
component has a non-empty intersection with U0, say at a node v, then a DFS
in which v participates solves the task in this component. There are possibly
other active components. This is where the separating property comes into play:
such an active component is contained entirely inside A or inside B, and Sep is
run recursively in parallel for these sets.
To bound the number of messages, we observe that each active node partici-

pates in exactly one DFS, and thus O(s) messages suffice. To bound the number
of rounds, we observe that any separator set contains at most c

√
n vertices. Fur-

ther, the execution of a single DFS started within a set V0 takes time O(|V0|).
Therefore, the number of used rounds is at most O(c

√
n)·(n+ 2

3n+
(

2
3

)2
n+. . .) =

O(n · √n).
Using the same technique of setting the level of parallelism of DFS procedures

as in k-WaitDFS, we derive the following theorem.
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Theorem 6. For any 1 ≤ k ≤ n, there exists an algorithm k-Sep, which solves
the problem in O(n · √n/k) rounds, using O(min{s · k} · s) messages.
Proof. The algorithm k-Sep works essentially in the same way as the original
Sep algorithm, but within a single set V0 = U0�A0�B0 corresponding to a tree
node, it utilizes some level of parallelism in running DFS procedures. Namely,
an original Sep algorithm runs the 1-WaitDFS procedure there, whereas k-
Sep runs k-WaitDFS, where each of |U0| DFS procedures is run for O(|V0|)
steps. As in the analysis of the k-WaitDFS algorithm, this gives us at most
O(min{k, s} · s) messages and O((c · √n/k) · |V0|) rounds.
In total, the algorithm also uses at most O(min{k, s} · s) messages, because

it stops after a successful DFS. The total number of rounds is then O(
√

n/k) ·
(n + 2

3n +
(

2
3

)2
n + . . .) = O(n · √n/k). ��
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