Virtual Network Embeddings with Good and Bad Intentions

Stefan Schmid
February, 2014
V Nets: Virtual Networking Cloud Resources.
Wide-Area VNet: Distributed Cloud.

Service deployment, bandwidth guarantees, ...
Datacenter VNet: Predictable Performance.

Today: only VMs come with performance isolation (if at all).
Datacenter VNet: Predictable Performance.

Today: only VMs come with performance isolation (if at all).
Today: only VMs come with performance isolation (if at all). Without network guarantees: unpredictable, varying, costly application performance.
Virtualization trend starts to spill-over to the network.

Benefit: decouple service from physical constraints, supports flexible embeddings and seamless migrations.
A Graph Embedding Problem!

VNet 1: Computation
Specification:
1. > 1 GFLOPS per node
2. Monday 3pm-5pm
3. multi provider ok

VNet 2: Mobile service w/ QoS
Specification:
1. close to mobile clients
2. >100 kbit/s bandwidth for synchronization

CloudNet requests

Physical infrastructure
(e.g., accessed by mobile clients)
Our Prototype Architecture.

Roles in CloudNet Arch.

Service Provider (SP)
(services over the top: knows applications)

Physical Infrastructure Provider (PIP)
(resource, bitpipes: knows demand&infrastructure)

knows service

knows network
Our Prototype Architecture.

Roles in CloudNet Arch.

Service Provider (SP)
(services over the top: knows applications)

Virtual Network Provider (VNP)
(resource broker, compiles resources)

Physical Infrastructure Provider (PIP)
(resource, bitpipes: knows demand & infrastructure)

Provide L2 topology: resource and management interfaces, provides indirection layer, across PIPs!
Can be recursive.
Our Prototype Architecture.

Roles in CloudNet Arch.

Service Provider (SP)
(services over the top: knows applications)

Virtual Network Operator (VNO)
(operates VNet, Layer 3+, triggers migration)

Virtual Network Provider (VNP)
(resource broker, compiles resources)

Physical Infrastructure Provider (PIP)
(resource, bitpipes: knows demand&infrastructure)

Build upon layer 2: clean slate!
Tailored towards application (OSN, …): routing, addressing, multi-path/redundancy…
E.g., today’s Internet.

Innovation!
Our Prototype Architecture.

Roles in CloudNet Arch.

Service Provider (SP)
(offers services over the top)

Virtual Network Operator (VNO)
(operaes VNet, Layer 3+, triggers migration)

Virtual Network Provider (VNP)
(resource broker, compiles resources)

Physical Infrastructure Provider (PIP)
(resource and bit pipe provider)

APIs: e.g., provisioning interfaces (migration)
Our Prototype Architecture.

Roles in CloudNet Arch.

- Service Provider (SP) (offers services over the top)
- Virtual Network Operator (VNO) (operates CloudNet, Layer 3+, triggers migration)
- Physical Infrastructure Provider (PIP) (resource and bit pipe provider)
- Virtual Network Provider (VNP) (resource broker, compiles resources)

Embed!

Internships...
Talk Outline:

1. Which VNets to accept? (And how to embed?)
2. Threats: VNet embeddings with bad intentions?
3. Migrating VNets
4. VNets with in-network processing
Competitive Access Control: Model (1)

VNet (VPN-like, single resource)

Helsinki (location,CPU)

bandwidth

CPU, location, ...

link capacity

Physical infrastructure
Competitive Access Control: Model (2)

Specification of CloudNet request:
- terminal locations to be connected
- benefit if CloudNet accepted (all-or-nothing, no preemption)
- desired bandwidth and allowed traffic patterns
- a routing model
- duration (from when until when?)

If VNets with these specifications arrive over time, which ones to accept online?

Objective: maximize sum of benefits of accepted VNets
Competitive Access Control: Model (3)

Which ones to accept?
VNet Specifications (1): Traffic Model.

Customer Pipe
Every pair \((u,v)\) of nodes requires a certain bandwidth.

Detailed constraints, only this traffic matrix needs to be fulfilled!

Hose Model
Each node \(v\) has **max ingress and max egress bandwidth**: each traffic matrix fulfilling them must be served.

More flexible, must support many traffic matrices!

Aggregate Ingress Model
Sum of ingress bandwidths must be at most a parameter \(I\).

Simple and flexible! Good for *multicasts* etc.: no overhead, duplicate packets for output links, not input links already!
VNet Specifications (2): Routing Model.

Tree
VNet is embedded as Steiner tree:

Single Path
Each pair of nodes communicates along a single path.

Multi Path
A linear combination specifies split of traffic between two nodes.
VNet Specifications (2): Routing Model.

Tree
VNet is embedded as Steiner tree:

Single Path
Each pair of nodes communicates along a single path.
Relay nodes may add to embedding costs! (resources depend, e.g., on packet rate)

Multi Path
A linear combination specifies split of traffic between two nodes.
Competitive Embeddings.

Competitive analysis framework:

Online Algorithm

Online algorithms make decisions at time t without any knowledge of inputs / requests at times $t' > t$.

Competitive Ratio

Competitive ratio r,

$$r = \frac{\text{Cost(ALG)}}{\text{cost(OPT)}}$$

The *price of not knowing the future*!

Competitive Analysis

An *r-competitive online algorithm* ALG gives a *worst-case performance guarantee*: the performance is at most a factor r worse than an optimal offline algorithm OPT!

No need for complex predictions but still good!
Algorithm design and analysis follows online primal-dual approach by Buchbinder&Naor!
(Application to general VNet embeddings, traffic&routing models, router loads, duration, approx oracles, ...)

1. Formulate dynamic primal (covering) and dual (packing) LP

\[
\begin{align*}
\text{(I)} &\quad \min Z_j^T \cdot 1 + X^T \cdot C \quad \text{s.t.} \quad Z_j^T \cdot D_j + X^T \cdot A_j \geq B_j^T \\
&\quad X, Z_j \geq 0 \\
\text{(II)} &\quad \max B_j^T \cdot Y_j \quad \text{s.t.} \quad A_j \cdot Y_j \leq C \\
&\quad D_j \cdot Y_j \leq 1 \\
&\quad Y_j \geq 0
\end{align*}
\]

Fig. 1: (I) The primal covering LP. (II) The dual packing LP.

2. Derive algorithm which always produces feasible primal solutions and where Primal >= 2*Dual

Algorithm 1 The General Integral (all-or-nothing) Packing Online Algorithm (GIPO).
Upon the \(j \)th round:
1. \(f_{j, \ell} \leftarrow \text{argmin}\{\gamma(j, \ell) : f_{j, \ell} \in \Delta_j\} \) (oracle procedure)
2. If \(\gamma(j, \ell) < b_j \) then, (accept)
 (a) \(y_{j, \ell} \leftarrow 1 \).
 (b) For each row \(e \): If \(A_{e,(j, \ell)} \neq 0 \) do
 \[
x_e \leftarrow x_e \cdot 2^{A_{e,(j, \ell)} / c_e} + \frac{1}{w(j, \ell)} \cdot (2^{A_{e,(j, \ell)} / c_e} - 1),
\]
 (c) \(z_j \leftarrow b_j - \gamma(j, \ell) \).
3. Else, (reject)
 (a) \(z_j \leftarrow 0 \).
Result.

Theorem

The presented online algorithm log-competitive in the amount of resources in the physical network. (If capacities can be exceeded by a log factor, it is even constant competitive.)

However, competitive ratio also depends on max benefit.
Algorithm and Proof Sketch (1).

Algorithm 1 The General Integral (all-or-nothing) Packing Online Algorithm (GIPO).

Upon the jth round:

1. $f_{j,\ell} \leftarrow \arg\min\{\gamma(j, \ell) : f_{j,\ell} \in \Delta_j\}$ (oracle procedure)
2. If $\gamma(j, \ell) < b_j$ then, (accept)
 (a) $y_{j,\ell} \leftarrow 1$.
 (b) For each row e : If $A_{e,(j,\ell)} \neq 0$ do

 $$x_e \leftarrow x_e \cdot 2^{A_{e,(j,\ell)}/c_e} + \frac{1}{w(j, \ell)} \cdot (2^{A_{e,(j,\ell)}/c_e} - 1).$$

 (c) $z_j \leftarrow b_j - \gamma(j, \ell)$.
3. Else, (reject)
 (a) $z_j \leftarrow 0$.

Embedding oracle: algo invokes an oracle procedure to determine cost of VNet embedding!
Algorithm 1 The General Integral (all-or-nothing) Packing Online Algorithm (GIPO).

Upon the jth round:

1. \[f_{j,\ell} \leftarrow \arg\min\{\gamma(j, \ell) : f_{j,\ell} \in \Delta_j\} \] (oracle procedure)
2. If \(\gamma(j, \ell) < b_j \) then, (accept)
 (a) \(g_{j,\ell} \leftarrow 1 \).
 (b) For each row \(e \) : If \(A_{e,(j,\ell)} \neq 0 \) do
 \[
x_e \leftarrow x_e \cdot 2^A_{e,(j,\ell)/c_e} + \frac{1}{w(j, \ell)} \cdot \left(2^{A_{e,(j,\ell)/c_e}} - 1\right).
\]
 (c) \(z_j \leftarrow b_j - \gamma(j, \ell) \).
3. Else, (reject)
 (a) \(z_j \leftarrow 0 \).

If resource cost lower than benefit: accept!
Algorithm 1 The General Integral (all-or-nothing) Packing Online Algorithm (GIPO).

Upon the jth round:

1. $f_{j,\ell} \leftarrow \text{argmin}\{\gamma(j, \ell) : f_{j,\ell} \in \Delta_j\}$ (oracle procedure)
2. If $\gamma(j, \ell) < b_j$ then, (accept)
 (a) $y_{j,\ell} \leftarrow 1.$
 (b) For each row $e : A_{e,(j,\ell)} \neq 0$ do
 $$x_e \leftarrow x_e \cdot 2^{A_{e,(j,\ell)}/c_e} + \frac{1}{w(j, \ell)} \cdot (2^{A_{e,(j,\ell)}/c_e} - 1).$$
 (c) $z_j \leftarrow b_j - \gamma(j, \ell).
3. Else, (reject)
 (a) $z_j \leftarrow 0.$

update allocations for accepted VNet...
Algorithm 1 The General Integral (all-or-nothing) Packing Online Algorithm (GIPO).

Upon the jth round:

1. $f_{j,\ell} \leftarrow \text{argmin}\{\gamma(j, \ell) : f_{j,\ell} \in \Delta_j\}$ (oracle procedure)
2. If $\gamma(j, \ell) < b_j$ then, (accept)

 (a) $y_{j,\ell} \leftarrow 1$.

 (b) For each row e : If $A_{e,(j,\ell)} \neq 0$ do

 $$x_e \leftarrow x_e \cdot 2^{A_{e,(j,\ell)}/c_e} + \frac{1}{w(j, \ell)} \cdot (2^{A_{e,(j,\ell)}/c_e} - 1).$$

 (c) $z_j \leftarrow b_j - \gamma(j, \ell)$.

3. Else, (reject)

 (a) $z_j \leftarrow 0$.

otherwise reject
(no change in substrate)
Algorithm and Proof Sketch (1).

Algorithm 1 The General Integral (all-or-nothing) Packing Online Algorithm (GIPO).

Upon the jth round:

1. $f_{j, \ell} \leftarrow \text{argmin}\{\gamma(j, \ell) : f_{j, \ell} \in \Delta_j\}$ (oracle procedure)
2. If $\gamma(j, \ell) < b_j$ then, (accept)
 (a) $y_{j, \ell} \leftarrow 1$.
 (b) For each row e : If $A_{e,(j,\ell)} \neq 0$ do

 $$x_e \leftarrow x_e \cdot 2^{A_{e,(j,\ell)} / c_e} + \frac{1}{w(j, \ell)} \cdot \left(2^{A_{e,(j,\ell)} / c_e} - 1\right).$$

 (c) $z_j \leftarrow b_j - \gamma(j, \ell)$.
3. Else, (reject)
 (a) $z_j \leftarrow 0$.

otherwise reject
(no change in substrate)

Algorithm efficient... except for oracle (static, optimal embedding)!
What if we only use a suboptimal embedding here?
Algorithm and Proof Sketch (2).

Problem: computation of optimal embeddings NP-hard!
Thus: use approximate embeddings! (E.g., Steiner tree)

GIPO:

Embedding approx.:

<insert your favorite approx algo>

Approx ratio r

Competitive ratio ρ

Lemma

The approximation does not reduce the overall competitive ratio by much: we get $\rho \times r$ ratio!
Talk Outline:

1. Which VNets to accept? (And how to embed?)

2. Threats: VNet embeddings with bad intentions?

3. Migrating VNets

4. VNets with in-network processing
Flexible Embeddings: Beyond VPN Model.

VNet (general)

resources/location/...

CPU, location, ...

Physical infrastructure

bandwidth

link capacity

VNet (general)
Security Issues.

- Are VNet embeddings a threat for ISPs?
- Do embeddings leak information about infrastructure?
Request Complexity.

Are VNet embeddings a threat for ISPs?

Yes

How many embeddings needed to fully reveal topology?

Yes

No
Embedding Model.

arbitrary node demand

arbitrary link demand

unit capacity

unit capacity
Embedding Model.

arbitrary node demand

arbitrary link demand

unit capacity

relay cost $\varepsilon > 0$
(e.g., packet rate)
Embedding Model.

We will ask for unit capacities on nodes and links! Essentially a graph immersion problem: disjoint paths for virtual links...

relay cost $\varepsilon > 0$ (e.g., packet rate)

arbitrary node demand

arbitrary link demand

unit capacity

unit capacity
Some Properties Simple...

«Is the network 2-connected?»
Example: Tree.

How to discover a tree?

Graph growing:
1. Test whether triangle fits? (loop-free)
2. Try to add neighbors to node as long as possible, then continue with other node
Example: Tree.

How to discover a tree?

Graph growing:
1. Test whether triangle fits? (loop-free)
2. Try to add neighbors to node as long as possible, then continue with other node
Example: Tree.

How to discover a tree?

Graph growing:
1. Test whether triangle fits? (loop-free)
2. Try to add neighbors to node as long as possible, then continue with other node
Example: Tree.

How to discover a tree?

Graph growing:
1. Test whether triangle fits? (loop-free)
2. Try to add neighbors to node as long as possible, then continue with other node
Example: Tree.

How to discover a tree?

Graph growing:
1. Test whether triangle fits? (loop-free)
2. Try to add neighbors to node as long as possible, then continue with other node
Example: Tree.

How to discover a tree?

Graph growing:
1. Test whether triangle fits? (loop-free)
2. Try to add neighbors to node as long as possible, then continue with other node

Virtual links may be embedded over multiple physical links!
Tree Solution: Graph Growing.

TREE ALGORITHM: line strategy

1. Binary search on longest path («anchor»):
 ...

2. Last and first node explored, explore «branches» at pending nodes

Amortized Analysis:
Per discovered physical link at most one query, plus at most one per physical node (no incident links).
Greedy Graph Growing on General Graphs? (1)

Finding path...
Greedy Graph Growing on General Graphs? (1)

Finding neighbors...
Greedy Graph Growing on General Graphs? (1)

Finding more neighbors...
How to close the gap? Adding connections between existing CloudNet nodes is expensive: try all pairs!
Greedy Graph Growing on General Graphs? (1)

Take-aways:

(1) Allocate resources on all links of highly connected components first: finding these links later is expensive.

(2) In particular, if graph X can be embedded on Y, try to embed Y first!
Greedy Graph Growing on General Graphs? (2)

Simple solution: First try to find the «knitting»!
- The «two-or-more» connected components
- Later «expand nodes» and «expand edges»
Simple solution: First try to find the «knitting»!
- The «two-or-more» connected components
- Later «expand nodes» and «expand edges»
Greedy Graph Growing on General Graphs? (3)

Idea: Ask graph «motif» only if it’s guaranteed that it cannot be embedded over a more highly connected subgraph! (And connectivity has to be added later.)

A B BB

Relay cost: 4 ε

Careful: What goes first also depends on entire motif sequences!

A ⇝ B B ⇝ A A ⇝ BB
Remark.

Minor vs embedding:

Even with unit link capacity, for small epsilon, graph A may be embeddable (→) into graph B although A is not a minor of B!

Graph Minor

Graph A is a minor of B if A can be obtained from B by (1) deleting nodes, (2) deleting edges, or (3) contracting two nodes along edges.

Planar graph (and hence K5-minor free):
But K5 can be embedded here!

Motif
Basic “knittings” of the graph.

Dictionary
Define an order on motif sequences: Constraints on which sequence to ask first in order not to overlook a part of the topology. (E.g., by embedding links across multiple hops.)

Poset
Poset = partially ordered set
(1) Reflexive: $G \rightarrow G$
(2) Transitive: $G \rightarrow G'$ and $G' \rightarrow G''$, then $G \rightarrow G''$
(3) Antisymmetric: $G \rightarrow G'$ and $G' \rightarrow G$ implies $G = G'$ (isomorphic)

Framework
Explore branches according to dictionary order, exploiting poset property.

Examples
Tree motifs:

Cactus motifs:

Dictionary dag (for chain C, cycle Y, diamond D, ...) with attachment points:

Complexity:
Depends on dictionary depth and number of attachment points
Overview of Results.

Tree
Can be explored in $O(n)$ requests. This is optimal!

General Graph
Can be explored in $O(n^2)$ requests. This is optimal!

Cactus Graph
Can be explored in $O(n)$ requests. This is optimal!

Lower bound: via number of possible trees and binary information.

Idea: Make spanning tree and then try all edges. (Edges directly does not work!)

Via «graph motifs»!
A general framework exploiting poset relation.
Overview of Results.

Lower bound: via number of possible trees and binary information.

Idea: Make spanning tree and then try all edges. (Edges directly does not work!)

Via «graph motifs»! A general framework exploiting poset relation.

Motif

Basic "knittings" of the graph.

Cactus motifs:

Define an order on motif sequences:

Tree motifs:

Constraints on which sequence to ask first in order not to overlook a part of the topology. (E.g., by embedding links across multiple hops.)

Dictionary

Partially ordered set: embedding relation fulfills reflexivity, antisymmetry, transitivity.

Poset

Framework

Explore branches according to dictionary order, exploiting poset property.
Talk Outline:

1. Which VNets to accept? (And how to embed?)
2. Threats: VNet embeddings with bad intentions?
3. Migrating VNets
4. VNets with in-network processing
Given a virtual network with guaranteed bandwidth: where to migrate service?
The Virtual Service Migration Problem.

Given a virtual network with guaranteed bandwidth: where to migrate service?
Simple model: one service, constant migration cost (interruption), access along graph.
Cost: $m \times \# \text{migrations} + \text{sum of access latency}$.

const bw

on service!
The Virtual Service Migration Problem.

Interesting variant of Metrical Task System:

Migration cost depends on available bandwidth, while access cost depends on graph distance. If migration cost constant: uniform metrical task system with access on graph (triangle inequality).

Given a virtual network with guaranteed bandwidth: where to migrate service?

Simple model: one service, constant migration cost (interruption), access along graph. Cost: $m \times \# \text{migrations} + \text{sum of access latency}.$
Algorithms?
Randomized Algo:
1. Access cost counters at each node (if service there)
2. When counter exceeds m, migrate to random node with counter lower than m.
3. When no node left, epoch ends. Reset and restart.
Randomized Algo:
1. Access cost **counters** at each node (if service there)
2. When counter exceeds m, migrate to **random node** with counter **lower than m**.
3. When no node left, **epoch** ends. Reset and restart.

Analysis: log(n)-competitive

Offline cost per epoch:
at least m (migrate or access cost)

Online cost per epoch:
Per phase at most 2m (access plus migration).
At most log(n) phases: go to random node in remaining order.
Deterministic Algo:
1. Access cost **counters** at each node (if service there)
2. When counter exceeds m, deactivate nodes with counters > m/40, migrate to active node in center of active component.
3. When no node left, **epoch** ends. Reset and restart.

Analysis: log(n)-**competitive**

Offline cost per epoch:
at least m (migrate or access cost)

Online cost per epoch:
Per phase at most 2m (access plus migration).
At most log(n) phases: exploit triangle inequality.
Center-of-Gravity Algo: Example.

Before phase 1:
Center-of-Gravity Algo: Example.

Before phase 2:

on service!

- active
- inactive
Center-of-Gravity Algo: Example.

End of epoch:

![Diagram](image_url)
Center-of-Gravity Algo: Result.

Competitive analysis? Assume constant bandwidths!

\[r = \frac{\text{ALG}}{\text{OPT}} \]

Lower bound cost of OPT:
In an epoch, each node has at least access cost \(m \), or there was a migration of cost \(m \).

Upper bound cost of ALG:
We can show that each phase has cost at most \(2m \) (access plus migration), and there are at most \(\log(n) \) many phases per epoch!

Theorem

ALG is \(\log(n) \) competitive!

A special uniform metrical task system (graph metric for access)!
Theorem

«Center of Gravity» algorithm is \(\log(n) \) competitive!

Also a much simpler randomized algorithm achieves this!

\(\log(n)/\log\log(n) \) lower bound follows from online function tracking reduction!

Online function tracking with linear penalties: Alice observes values \(x_t \) and Bob has representative value \(F(x) \). Upon new value, either Alice transmits (migration cost) or pays difference \(|x_t - y| \) (access cost).
Theorem
«Center of Gravity» algorithm is \(\log(n) \) competitive!

Also a much simpler randomized algorithm achieves this!

\(\log(n)/\log\log(n) \) lower bound follows from online function tracking reduction!

Can be achieved with a refined analysis!
The Online Algorithm FOLLOWER.

Concepts:
- **Learn from the past**: migrate to center of gravity of best location in the past
- **Amortize**: migrate only when access cost at current node is as high as migration cost!

Simplified Follower

1. \(F_i \) are requests handled while service at \(f_i \)
2. to compute \(f_{i+1} \) (new pos), Follower only takes into account requests during \(f_i \): \(F_i \)
3. migrate to center of gravity of \(F_i \), as soon as migration costs there are amortized (and «reset counters» immediately)!

```
Algorithm Follower
1: \( i := 0 \); \( k_0 := 0 \) \( \forall j \): \( F_j = \{ \} \) (The server starts at an arbitrary node \( f_0 \))
Upon a new request \( r \) do:
2: Serve request \( r \) with server at \( f_i \)
3: \( F_i := F_i \cup r \)
4: \( f'_i := \) arbitrary \( u \in CG(F_i) \)
5: \( x' := d(f_i, f'_i) \) \{for co.di., and \( x' := 1 \) for co.nb.m.\}
6: if \( C(f_i, F_i) \geq g(x'|k_i) \) then
7: \( f_{i+1} := f'_i \); \( x_i := x' \)
8: \( y(w) := d(f_i, w) + d(w, f_{i+1}) \) \{for co.di., and for co.nb.m. \( y(w) := 2 \) for \( w \neq f_{i+1} \) and \( y(w) := 1 \) otherwise \}
9: \( \text{slack}(w \in V) := g(y(w)|k_i) - C(f_i, F_i) \)
10: \( w_i := \) Node \( w \) with minimum \( \text{slack}(w) \) such that \( \text{slack}(w) \geq 0 \)
11: Move server to \( w_i \) and if \( w_i \neq f_{i+1} \) onto \( f_{i+1} \)
12: \( k_{i+1} := k_i + y(w_i) \)
13: \( i := i + 1 \)
14: end if
```
The Online Algorithm FOLLOWER.

Concepts:
- **Learn from the past**: migrate to center of gravity of best location in the past
- **Amortize**: migrate only when access cost at current node is as high as migration cost!

Simplified Follower

1. F_i are requests handled while service at f_i
2. to compute f_{i+1} (new pos), Follower only takes into account requests during f_i: F_i
3. migrate to center of gravity of F_i, as soon as migration costs there are amortized (and «reset counters» immediately)!

Algorithm Follower

1: $i := 0$; $k_0 := 0$ \forall j: $F_j = \{\}$ (The server starts at an arbitrary node f_0)
Upon a new request r do:
2: Serve request r with server at f_i
3: $F_i := F_i \cup r$
4: $f^' :=$ arbitrary $u \in CG(F_i)$
5: $x^' := d(f_i, f^')$ \{for co.di., and $x^' := 1$ for co.nb.m.\}
6: if $C(f_i, F_i) \geq g(x^'|k_i)$ then
7: \quad $f_{i+1} := f^'$; $x_i := x^'$
8: \quad $y(w) := d(f_i, w) + d(w, f_{i+1})$ \{for co.di., and for co.nb.m. $y(w) := 2$ for $w \neq f_{i+1}$ and $y(w) := 1$ otherwise \}
9: \quad slack$(w \in V) := g(y(w)|k_i) - C(f_i, F_i)$
10: \quad $w_i :=$ Node w with minimum slack(w) such that slack$(w) \geq 0$
11: \quad Move server to w_i and if $w_i \neq f_{i+1}$ onto f_{i+1}
12: \quad $k_{i+1} := k_i + y(w_i)$
13: \quad $i := i + 1$
14: end if

Also works for migrations with discount! (Reseller/broker gives discount!)
Intuition.

on service!
Intuition.
Intuition.

\[F_i = f_{i+1} \]

on service!
Modeling Access and Migration Costs.

Access Costs

Latency along shortest path in graph.
(Graph distances, and in particular: metric!)

Migration Costs

Generalized models:
- E.g., depends on bandwidth along path (duration of service interruption)
- E.g., depends on distance travelled (latency)
- Discount: e.g., VNP (number of migrations, distance travelled, ...)
Modeling Access and Migration Costs.

Access Costs

Latency along shortest path in graph.
(Graph distances, and in particular: metric!)

Migration Costs

Generalized models:
- E.g., depends on bandwidth along path (duration of service interruption)
- E.g., depends on distance travelled (latency)
- Discount: e.g., VNP (number of migrations, distance travelled, ...)

General cost function $g(x|y)$: cost of migrating distance x given already travelled y.

Or $g(1|y)$: cost of migration given we already migrated y times.
Competitive Ratio of FOLLOWER.

Competitive analysis? FOLLOWER / OPT?

Theorem

If no discounts are given, Follower is \(\frac{\log(n)}{\log\log(n)} \) competitive!

Simple model with migration costs = bandwidth, and homogeneous

Page migration model with migration costs = distance, but discounts

Theorem

If migration costs depend on travelled distance (page migration), competitive ratio is \(O(1) \), even with discounts.
Related Work.

- **Metrical Task Systems:**
 - Classical online problem where server at certain location («state») serves requests at certain costs; state transitions also come at certain costs («migration»)
 - Depending on migration cost function more general (we have graph access costs) and less general (we allow for migration discounts)
 - E.g., uniform space metrical task system: migration costs constant, but access costs more general than graph distances! Lower bound of $\log(n)$ vs $\log(n)/\log\log(n)$ upper bound in our case.

- **Online Page Migration**
 - Classical online problem from the 80ies; we generalize cost function to distance discounts, while keeping $O(1)$-competitive

Our work lies between!
Talk Outline:

1. Which VNets to accept? (And how to embed?)
2. Threats: VNet embeddings with bad intentions?
3. Migrating VNets
4. VNets with in-network processing
VNet with Processing

Unicast: one connection to each receiver (same for aggregation)!

receiver
sender
VNet with Processing

Multicast: processing / splitting at each node

- **receiver**
- **sender**
- **processing node**
- **sender with processing**
VirtuCast: New Tradeoff?

Unicast vs. Multicast

Solution Method
- minimal cost flow
- Steiner arborescence

Solution uses
- 43 edges
- 0 processing nodes
- 16 edges
- 9 processing nodes
VirtuCast: Optimal Tradeoff

Solution uses
- 26 edges
- 2 processing nodes

New Model
Constrained Virtual Steiner Arborescence Problem (CVSAP)

New Solution Method
VirtuCast algorithm
A Single-Commodity Algorithm

Example: 6000 edges and 200 Steiner sites
- Single-commodity: 6000 integer variables
- Multi-commodity: 1,200,000 binary variables

Figure: Single-commodity

Figure: Multi-commodity
A Single-Commodity Algorithm

Example: 6000 edges and 200 Steiner sites
- Single-commodity: 6000 integer variables
- Multi-commodity: 1,200,000 binary variables

VirtuCast: 2 Stages
1. Compute single-commodity MIP
2. Make flow decomposition: find path

Figure: Single-commodity

Figure: Multi-commodity
V Nets. Use Cases

„VPN++“

Goal: Fully specified CloudNet mapping constraints (e.g., end-points for a telco), but with **QoS guarantees** (e.g., bandwidth) along links

1Mbit/s

Berlin

1Mbit/s

Palo Alto

1Mbit/s

„November 22, 1pm-2pm!“

Datacenters

„Guaranteed resources, job deadlines met, no overhead!“

“Network may delay execution: costly for per hour priced VM!”

Berlin

< 10ms

< 10ms

< 10ms

100 MB/s

100 MB/s

any

any

any

Spillover/Out-Sourcing

Elastic computing

„50 TB storage, 10 Tflops computation!“

Berlin

< 50ms

< 50ms

< 50ms

(any European cloud provider (e.g. due to legal issues?)“

Migration / Service Deployment

Goal: Move with the sun, with the commuters, (QoS) allow for **maintenance**, avoid roaming costs... e.g., SAP/game/translator server, small CDN server...

„any European cloud provider (e.g. due to legal issues?)“

1Mbit/s

1Mbit/s

1Mbit/s

Bendecover

100 MB/s

> 100 MB/s

> 100 MB/s

< 10ms

< 10ms

< 10ms

Berlin

< 10ms

< 10ms

< 10ms

100 MB/s

100 MB/s

any

any

any

Thank you!
Backup.
Proof Sketch (1): Simplified LP.

Fig. 1: (I) The Primal linear embedding program. (II) The Dual linear embedding program.
Proof Sketch (2): Simplified LP.

\[\min \sum_{e \in E} x_e \cdot c(e) + \sum_{v \in V} x_v \cdot c(v) + \sum_i z_i \cdot d_i \quad s.t. \]
\[(\text{Covering Const.}) \forall i \forall \Delta \in \Delta_i z_i + \alpha(i, \Delta) \geq b_i \]
\[\forall i \forall \Delta \in \Delta_i x_e, x_v, z_i \geq 0 \]

(I)

\[\max \sum_i b_i \cdot \sum_{\Delta_{ij} \in \Delta_i} f_{ij} \quad s.t. \]
\[(\text{Vertex Capacity Const.}) \quad \forall v \in V \quad \text{flow}(v) \leq c(v) \]
\[(\text{Edge Capacity Const.}) \quad \forall e \in E \quad \text{flow}(e) \leq c(e) \]
\[(\text{Demand Const.}) \quad \forall i \quad \sum_{\Delta_{ij} \in \Delta_i} f_{ij} \leq d_i \]
\[f \geq 0 \]

(II)

Fig. 1: (I) The Primal linear embedding program. (II) The Dual linear embedding program.
Proof Sketch (3): Simplified LP.

Algorithm 1 The ISTP Algorithm.

Input: $G = (V, E)$ (possibly infinite), sequence of requests $\{r_i\}_{i=1}^{\infty}$ where $r_i \triangleq (U_i, c_i, d_i, b_i)$.

Upon arrival of request r_i:

1) $j \leftarrow \arg\min\{\alpha(i, j) : \Delta_{ij} \in \Delta_{i}\}$ (find a lightest realization over the terminal set U_i using an oracle).

2) If $\alpha(i, j) < b_i$ then, (accept r_i)
 a) $f_{ij} \leftarrow d_i$.
 b) For each $e \in E(\Delta_{ij})$ do

 $$x_e \leftarrow x_e \cdot 2^{d_i/c(e)} + \frac{1}{|V(\Delta_{ij})|} \cdot (2^{d_i/c(e)} - 1).$$

 c) For each $v \in V(\Delta_{ij})$ do

 $$x_v \leftarrow x_v \cdot 2^{c_i/c(v)} + \frac{d_i/c_i}{|V(\Delta_{ij})|} \cdot (2^{c_i/c(v)} - 1).$$

 d) $z_i \leftarrow b_i - \alpha(i, j)$.

3) Else, (reject r_i)
 a) $z_i \leftarrow 0$.

oracle (triangle only)

update primal variables if accepted
Proof Sketch (4): Simplified LP.

Step (2b) increases the cost \(\sum_{e} x_e \cdot c(e) \) as follows (change \(\Delta(x_e) = \sum_{e} (x_e^t - x_e^{t-1}) \cdot c(e) \)):

\[
\Delta(x_e) \leq \sum_{e \in \Delta} \left[x_e \cdot \left(2^{d_1/c(e)} - 1 \right) + \frac{1}{|V(\Delta_{ij})|} \cdot \left(2^{d_1/c(e)} - 1 \right) \right] \cdot c(e) \\
= \sum_{e \in \Delta} \left(x_e + \frac{d_1}{|V(\Delta_{ij})|} \right) \cdot \left(2^{d_1/c(e)} - 1 \right) \cdot c(e) \\
\leq c_{\min}(e) \cdot \left(2^{d_1/c_{\min}(e)} - 1 \right) \sum_{e \in \Delta} \left(x_e + \frac{1}{|V(\Delta_{ij})|} \right) \\
\leq d_1 \cdot \left(2^1 - 1 \right) \sum_{e \in \Delta} \left(x_e + \frac{1}{|V(\Delta_{ij})|} \right) \\
\leq d_1 \cdot \sum_{e \in \Delta} x_e + d_4 \cdot \sum_{e \in \Delta} \frac{1}{|V(\Delta_{ij})|} \\
\leq d_1 \cdot \sum_{e \in \Delta} x_e + d_4. \tag{1}
\]

Step (2c) increases the cost \(\sum_{v} x_v \cdot c(v) \) as follows (change \(\Delta(x_v) = \sum_{v} (x_v^t - x_v^{t-1}) \cdot c(v) \)):

\[
\delta(x_v) \leq \sum_{v \in \Delta} \left[x_v \cdot \left(2^{d_1/c(v)} - 1 \right) + \frac{d_1/c_1}{|V(\Delta_{ij})|} \cdot \left(2^{d_1/c(v)} - 1 \right) \right] \cdot c(v) \\
= \sum_{v \in \Delta} \left(x_v + \frac{d_1/c_1}{|V(\Delta_{ij})|} \right) \cdot \left(2^{d_1/c(v)} - 1 \right) \cdot c(v) \\
\leq c_{\min}(v) \cdot \left(2^{d_1/c_{\min}(v)} - 1 \right) \sum_{v \in \Delta} \left(x_v + \frac{d_1/c_1}{|V(\Delta_{ij})|} \right) \\
\leq c_1 \cdot \left(2^1 - 1 \right) \sum_{v \in \Delta} \left(x_v + \frac{d_1/c_1}{|V(\Delta_{ij})|} \right) \\
\leq c_1 \cdot \sum_{v \in \Delta} x_v + c_1 \cdot \sum_{v \in \Delta} \frac{d_1/c_1}{|V(\Delta_{ij})|} \\
\leq c_1 \cdot \sum_{v \in \Delta} x_v + d_4. \tag{2}
\]