Towards *Terminator 2*:

Self-stabilizing and Distributed Topological Graph Linearization

Stefan Schmid

Joint work with:
- Dominik Gall
- Riko Jacob
- Andrea Richa
- Christian Scheideler
- Hanjo Täubig

Wroclaw Information Technology Initiative (2008)
Goal: *Terminator 2!*
Towards Terminator 2:

Self-stabilizing and Distributed Topological Graph Linearization

Stefan Schmid

Joint work with:

Dominik Gall
Riko Jacob
Andrea Richa
Christian Scheideler
Hanjo Täubig

Wroclaw Information Technology Initiative (2008)
Self-Stabilization (1)

• Important concept in fault-tolerance

• A self-stabilizing system (eventually) ends up in a correct state...

• ... independently of the initial state.

„All the designs I was familiar with were not self-stabilizing in the sense that when once (erroneously) in an illegitimate state, they could – and usually did! – remain so forever.“

E. W. Dijkstra (1974)
Self-Stabilization (2)

• Model: Adversary can disturb the computations (shared variables in system state) arbitrarily

• Once the changes are over, algorithm converges towards desired state
Towards *Terminator 2:*

Self-stabilizing and Distributed Topological Graph Linearization

Stefan Schmid

Joint work with:
Dominik Gall
Riko Jacob
Andrea Richa
Christian Scheideler
Hanjo Täubig

Wroclaw Information Technology Initiative (2008)
Graph Linearization

- **INPUT**: Arbitrary connected graph
 - nodes have *arbitrary IDs*
Graph Linearization

- OUTPUT: Sorted graph
Towards *Terminator 2*:

Self-stabilizing and **Distributed** Topological Graph Linearization

Stefan Schmid

Joint work with:
Dominik Gall
Riko Jacob
Andrea Richa
Christian Scheideler
Hanjo Täubig

Wroclaw Information Technology Initiative (2008)
Every node runs its own program:
- each pair of nodes \((u,v)\) shares a Boolean variable \(e(u,v)\) („edge“)
- program of the node consists of variables and actions
- an action is of the form:

 \[
 \text{<name> : <guard> => <commands>}
 \]

 - Guard: predicate over the local and shared variables of node
 - Commands: sequence of commands involving any local or shared variables of the node itself or its neighbors
 - An action is enabled if guard is true
Towards *Terminator 2*: Self-stabilizing and Distributed Topological Graph Linearization

Stefan Schmid

Joint work with:
Dominik Gall
Riko Jacob
Andrea Richa
Christian Scheideler
Hanjo Täubig

Focus on scalability!

Wroclaw Information Technology Initiative (2008)
Scalability

• Self-stabilizing algorithm: terminates \textit{eventually}

• But what about \textit{convergence time}?

• Analysis of synchronous model
 - total number of \textit{rounds} (after adversarial change) = \textit{execution time}

• What can be done in one round?

\begin{quote}
For scalability reasons, a node should not be involved in too many changes per round!
\end{quote}
Talk Outline
1. Two Distributed Algorithms for Graph Linearization
2. Model for Time Complexity of Convergence
3. Analysis and Simulation
4. Conclusion
Two Algorithms
Basic Linearization Step

• A basic linearization step involves a node triple

• Observe: Connectivity is preserved
LIN_all and LIN_max

- LIN_all proposes *all possible triples* to the scheduler (for node u)

 \[
 \text{linearize left}(v, w) : (v, w \in u.L \land w < v < u) \rightarrow e(u, w) := 0, e(v, w) := 1
 \]

 \[
 \text{linearize right}(v, w) : (v, w \in u.R \land u < v < w) \rightarrow e(u, w) := 0, e(v, w) := 1
 \]

- LIN_max proposes the *furthest triple* on each side (for node u)

 \[
 \text{linearize left}(v, w):
 \quad (v, w \in u.L) \land w < v < u \land \exists x \in u.L \setminus \{w\} : x < v \rightarrow e(u, w) := 0, e(v, w) := 1
 \]

 \[
 \text{linearize right}(v, w):
 \quad (v, w \in u.R) \land u < v < w \land \exists x \in u.R \setminus \{w\} : x > v \rightarrow e(u, w) := 0, e(v, w) := 1
 \]
\textbf{LIN}_{all} and \textbf{LIN}_{max}

- \textbf{LIN}_{all} proposes \textit{all possible triples} to the scheduler (for node u)

- \textbf{LIN}_{max} proposes the \textit{furthest triple} on each side (for node u)
LIN\text{all} and LIN\text{max}

- **LIN\text{all}** proposes *all possible triples* to the scheduler (for node u)

- **LIN\text{max}** proposes the *furthest triple* on each side (for node u)
LIN\textsubscript{all} and LIN\textsubscript{max}

- **LIN\textsubscript{all}** proposes *all possible triples* to the scheduler (for node u)

 ![Diagram showing all possible triples]

- **LIN\textsubscript{max}** proposes the *furthest triple* on each side (for node u)

 ![Diagram showing furthest triples]
LIN\textsubscript{all} and LIN\textsubscript{max}

- LIN\textsubscript{all} proposes \textit{all possible triples} to the scheduler (for node u)

- LIN\textsubscript{max} proposes the \textit{furthest triple} on each side (for node u)
LIN_{all} and LIN_{max}

- LIN_{all} proposes \textit{all possible triples} to the scheduler (for node \(u \))

- LIN_{max} proposes the \textit{furthest triple} on each side (for node \(u \))
Time Complexity Model
A Naïv Model

• There are different models for what can happen in one round!

• For example: Every node can fire one action per round

• Problem: Nodes can be involved in many changes
 - Therefore, this solution does not scale!
We propose the following, scalable model:
- Let $V(A)$ be the nodes involved in an action A
- Two actions A and B are independent if $V(A) \cap V(B) = \emptyset$
- Only an independent set of actions is fired per round
Schedulers

- Nodes propose different enabled actions to the scheduler...

- ... – which one to choose?

Worst-case scheduler: chooses independent set of enabled actions which maximizes the runtime

Best-case scheduler: chooses independent set of enabled actions which minimizes the runtime

Randomized scheduler: chooses independent sets at random

Greedy scheduler: scheduler gives priority to nodes having a large degree
Analysis
Analysis

- It turns out that already these simple algorithms are **challenging**!

- **Overview** of results:

 Worst-case scheduler:
 - \(\text{LIN}_{\text{max}} \) requires \(\Theta(n^2) \) rounds
 - \(\text{LIN}_{\text{all}} \) requires \(O(n^2 \log n) \) rounds

 Greedy scheduler:
 - \(\text{LIN}_{\text{all}} \) requires \(O(n \log n) \) rounds

 Best-case scheduler:
 - \(\text{LIN}_{\text{max}} \) and \(\text{LIN}_{\text{all}} \) require \(\Theta(n) \) rounds

 With degree cap (worst-case scheduler):
 - \(\text{LIN}_{\text{max}} \) requires at most \(O(n^2) \) and \(\text{LIN}_{\text{all}} \) at most \(O(n^3) \) rounds
In Silico Experiments

- In reality, the runtimes are often close to linear (or even constant in „local graphs“ where node i connects to nodes [i-k,i-k+1,...,i-1,i+1,i+2,...i+k])!
- LIN_{all} and LIN_{\max} yield a similar performance

Figure 3: Left: Parallel runtime of LIN_{all} for different graphs under S_{rand}: two k-local graphs with $k = 5$, $k = 10$ and $k = 20$, two random graphs with $p = .1$ and $p = .2$, a spiral graph and a $n/3$-BBG. Right: Same experiments with LIN_{\max}.

Stefan Schmid @ Wroclaw, 2008
Degree Evolution

- Maximum and average degree do not increase
- Rather, degrees are reduced quickly

Figure 4: Left: Maximum and average degree during a run of LIN_{all} and LIN_{max} on a random graph with edge probability $p = .1$. Right: The same experiment on a random graph with $p = .2$.
Degree Cap Phenomenon

- It appears as a **degree cap constraint** can sometimes improve the runtime!
 - too small degree: blocks many options
 - however, small degree also forces execution on „good paths“
A Sample Analysis (1)

Theorem: Under a worst-case scheduler, LIN_{\text{max}} terminates after at most O(n^2) single linearization steps.

Unfortunately, executions can be highly serial and hence the number of linearization steps is asymptotically equivalent to the number of rounds!

Proof.

Consider the potential function

$$\Phi = \sum_{v \in V} [(2\zeta_l(v) - 1) + (2\zeta_r(v) - 1)] = \sum_{v \in V} 2(\zeta_l(v) + \zeta_r(v) - 1)$$

where $\zeta(v)$ is the length of the longest edge out of v to the left and right.
A Sample Analysis (2)

\[
\Phi = \sum_{v \in V} [(2\zeta_l(v) - 1) + (2\zeta_r(v) - 1)] = \sum_{v \in V} 2(\zeta_l(v) + \zeta_r(v) - 1)
\]

Initially \(\Phi_0 < 2 \, n^2\), as \(\zeta_l(v) + \zeta_r(v) < n\) for each node \(v\).

After round \(i\), the potential is at most \(\Phi_i < 2 \, n^2 - i\).

It most hold for any \(j\) that \(\Phi_j > 0\), otherwise a node would be isolated.

Thus, the claim follows.
A Sample Analysis (3)

$$\Phi = \sum_{v \in V} [(2\zeta_l(v) - 1) + (2\zeta_r(v) - 1)] = \sum_{v \in V} 2(\zeta_l(v) + \zeta_r(v) - 1)$$

Why is $\Phi_i < 2n^2 - i$ true?

Consider a right linearization step:

![Diagram](u(v)w)

Case 1: If $\{u,w\}$ is also longest edge of w to the left.

We remove two longest edges of length $|\{u,w\}|$ from Φ.

On the other hand, u may have a new longest edge $\{u,v\}$ to the right, v may have a new longest edge $\{v,w\}$ to the right, and w a new edge of length at most $|\{u,w\}| - 1$ to the left. Since $|\{u,w\}| = |\{u,v\}| + |\{v,w\}|$, it follows that

$$\Delta \Phi \leq (2 \cdot \text{len}(\{u,v\}) - 1) + (2 \cdot \text{len}(\{v,w\}) - 1) + (2(\text{len}(\{u,w\}) - 1) - 1) - (4 \cdot \text{len}(\{u,w\}) - 2) \leq -3$$
A Sample Analysis (4)

\[\Phi = \sum_{v \in V} [(2\zeta_l(v) - 1) + (2\zeta_r(v) - 1)] = \sum_{v \in V} 2(\zeta_l(v) + \zeta_r(v) - 1) \]

Why is \(\Phi_i < 2n^2 - i \) true?

Consider a right linearization step:

Case 2: If \(\{u,w\} \) is not longest edge of \(w \) to the left.

We remove longest edge of length \(|\{u,w\}| \) from \(\Phi \).
On the other hand, \(u \) may have a new longest edge \(\{u,v\} \) to the right, \(v \) may have a new longest edge \(\{v,w\} \) to the right. In this case

\[\Delta \Phi \leq (2 \cdot \text{len}(\{u,v\}) - 1) + (2 \cdot \text{len}(\{v,w\}) - 1) - (2 \cdot \text{len}(\{u,w\}) - 1) \leq -1 \]

QED
Another Sample Analysis (1)

Theorem: Under a greedy scheduler, LIN\textsubscript{all} terminates after at most $O(n \log n)$ rounds.

Greedy scheduler: In each round, nodes are sorted w.r.t. remaining degree (remove fired triples with incident edges). Scheduler picks node v with largest degree, and schedules triple of v (to the larger degree side) with most distant neighbors.

Proof.

Consider the potential function $\Psi = \sum_{e \in E} \text{len}(e)$

Initially: $\psi_0 < n^3$
In the end: $\psi = n-1$

We will show that in each round, potential ψ is multiplied by a factor of at most $1-1/(24n)$. This implies the claim.
Another Sample Analysis (2)

This implies the claim?

Lemma 3.4. Let Ξ be any positive potential function, where Ξ_0 is the initial potential value and Ξ_i is the potential after the i^{th} round of a given algorithm ALG. Assume that $\Xi_i \leq \Xi_{i-1} \cdot (1 - 1/f)$ and that ALG terminates if $\Xi_j \leq \Xi_{\text{stop}}$ for some $j \in \mathbb{N}$. Then, the runtime of ALG is at most $O(f \cdot \log (\Xi_0 / \Xi_{\text{stop}}))$ rounds.

Proof. From $\Xi_i \leq \Xi_{i-1} \cdot (1 - 1/f)$, it follows that $\Xi_j \leq \Xi_0 \cdot (1 - 1/f)^j$. Now consider $j = f \cdot \ln \frac{\Xi_0}{\Xi_{\text{stop}}}$, which leads to (using $\ln(1 + x) \leq x$ for all $x > -1$)

$$
\Xi_j \leq \Xi_0 \cdot (1 - 1/f)^{f \cdot \ln \frac{\Xi_0}{\Xi_{\text{stop}}}} = \Xi_0 e^{f \cdot \ln \frac{\Xi_0}{\Xi_{\text{stop}}} \cdot (1 - 1/f)} \leq \Xi_0 e^{f \cdot \ln \frac{\Xi_0}{\Xi_{\text{stop}}} \cdot (-1/f)} = \Xi_0 e^{-\ln \frac{\Xi_0}{\Xi_{\text{stop}}}} = \Xi_{\text{stop}}.
$$

\square
Another Sample Analysis (3)

Greedy scheduler: In each round, nodes are sorted w.r.t. remaining degree (remove fired triples with incident edges). Scheduler picks node v with largest degree, and schedules triple of v with most distant neighbors (to larger degree side).

Consider the potential function $\Psi = \sum_{e \in E} \text{len}(e)$

We will show that in each round, potential ψ is multiplied by a factor of at most $1 - 1/(24 \cdot n)$. This implies the claim.

- Observe: firing a triple reduces potential ψ...
- ... but other nodes will be blocked in this round.

• Idea: we want to estimate the amount of blocked potential.
Another Sample Analysis (4)

• Consider the following right-linearization step

• Removing \{u,w\} and adding \{v,w\} reduces the potential by at least

\[\text{dist}(u,w) - \text{dist}(v,w) = \text{dist}(u,v)\]

• Since the greedy scheduler takes larger degree side:

\[\text{dist}(u,v) \geq \frac{\text{deg}(u)}{2} - 1 \geq \frac{\text{deg}(v)}{4}\]
Another Sample Analysis (5)

- Thus, potential reduced in one step by at least $\text{deg}(u)/4$

- How much potential is blocked?

- Consider remaining components after removing triple
- Consider neighbor x of u, v or w
 - if x is in ordered line component => blocked potential at most $n+n$
 - if x is in different component => can still be linearized further (account for blocked component's potential later, only count link length potential: n)
Another Sample Analysis (6)

- The amount of blocked potential is at most $6 \cdot \text{deg}(u) \cdot n$
 - since u has larger degree than v and w,
 - and since we have at most blocked potential $2 \cdot n$ per neighbor (n for component plus n for link to this neighbor)

- Thus, potential reduced by a factor at least $1-\Theta(1/n)$ per round.

QED.
Conclusion
Self-stabilizing Graph Linearization

- Most simple algorithms already have many interesting properties
- The quest for faster algorithms has already started!
- Besides linearization, it will be useful to construct alternative graphs in a self-stabilizing manner

Dziekuje!

Slides and papers at http://www14.informatik.tu-muenchen.de/personen/schmiste/